
An Illustrated Guide to Shell Magic: Standard I/O & Redirection
Created by Brennen Bearnes

Last updated on 2018-08-22 03:46:33 PM UTC

2
3
5
7
7
8

10
10
10
11
11

13
13
14

15

Guide Contents

Guide Contents
Overview
Input & Output
Standard I/O & Pipes

Standard Streams
Building a Simple Pipeline

Redirection To & From Files
Writing to a File
Appending to the End of a File
Reading from a File
A Common Gotcha: Changing a File In-Place

Standard Error & Exit Codes
The Discontents of Error Messaging
Exit Status

Concluding Remarks: Composability

© Adafruit Industries https://learn.adafruit.com/basic-shell-magic Page 2 of 15

Overview
This guide assumes you have access to the Bash shell on a GNU/Linux computer. Most of the examples use a
Raspberry Pi running Raspbian. If you haven't, you should start with What is this "Linux", anyhow? (https://adafru.it/jDZ),
What is the Command Line? (https://adafru.it/sdo), and An Illustrated Shell Command Primer (https://adafru.it/CeI).

Now that we've covered some basic shell commands, let's shift focus a little and talk about some of the features that
bind those commands together into a useful working environment. In this guide, we'll cover:

standard input and output
combining commands with pipes
redirecting output to and from files
standard error and exit codes

© Adafruit Industries https://learn.adafruit.com/basic-shell-magic Page 3 of 15

file:///what-is-linux
file:///what-is-the-command-line/overview
file:///an-illustrated-shell-command-primer

While these may sound like dry topics, it's here that the command line begins to come into its own as a tool and
environment for solving problems. Pull up a terminal and read on!

© Adafruit Industries https://learn.adafruit.com/basic-shell-magic Page 4 of 15

Input & Output
By now, you've probably read about a number of commands available in the shell. For example, ls shows you a list of
files (https://adafru.it/Cf4); cat , head , and tail look inside files (https://adafru.it/Cf5), and so on.

Let's imagine for a second that each of those commands is a kind of little machine in a workshop or on a factory floor.
It's actually a pretty good metaphor. Shell commands are generally little self-contained programs, and a program isn't
too hard to think of as a machine. Each machine takes some stuff as input, chugs along for a while, and produces
some stuff as output.

So you have lots of special-purpose machines at your disposal, and they do all kinds of useful stuff. In addition to the
ones we already talked about, there are commands to find files, search for text and transform it, look up words, convert
units and formats, scan networks, generate pictures - most of the stuff you can think of to do with a computer, really.

If you've got machines to handle a bunch of different tasks, you can get all kinds of work done. And yet... It can get
awfully tedious moving things between them.

© Adafruit Industries https://learn.adafruit.com/basic-shell-magic Page 5 of 15

file:///an-illustrated-shell-command-primer/ls
file:///an-illustrated-shell-command-primer/looking-inside-files-cat-less-head-and-tail

Have you ever had to save a file in one program, work on it in another, and import it into a third? Have you ever spent
hours copy-and-pasting things between two programs?

I once had a temporary job that consisted of reading a name off of a sheet of paper, looking up a corresponding
folder, finding a number in that folder to search for in a database program, and then using the mouse to copy and
paste a different number in between two fields in the same program.

A lot of work done on computers can feel that way: Like slowly carrying buckets full of stuff in-between machines and
programs.

Let's go back to our metaphorical workshop. What if all the machines had standard connectors on them for some sort
of magic pipe, and the magic pipe gave you the option to move stuff between any two machines?

© Adafruit Industries https://learn.adafruit.com/basic-shell-magic Page 6 of 15

Standard I/O & Pipes

Standard Streams

Of course, real factories don't have magic pipes that can transport everything, and in the physical world there's no
such thing as a universal input/output connector. It turns out, however, that the shell does have those things, or
something pretty close to them:

Let's back up a bit. Imagine that a command like head or tail is a machine that takes input in one side and spits part of
it out the other. In many of the examples we've see so far (https://adafru.it/Cf5), you specify the input by giving the
command an argument naming a file to use, like tail /usr/share/dict/words , and the output appears in your terminal. In
other cases, a program runs interactively and accepts input directly from the terminal itself - that is, from what you type
on your keyboard.

standard input or stdin accepts stuff file descriptor 0

standard output or stdout spits stuff out file descriptor 1

standard error or stderr
spits out error messages (usually to the terminal;

more about that in a bit)
file descriptor 2

pipes move stuff between streams

The location of the dictionary may have changed, try `/usr/share/dict/wamerican` instead! or `ls /usr/share/dict`
to see what's available

© Adafruit Industries https://learn.adafruit.com/basic-shell-magic Page 7 of 15

file:///an-illustrated-shell-command-primer/looking-inside-files-cat-less-head-and-tail

What you see in your terminal is like the stuff coming out one end of a machine, or like an open tap spilling water on
the ground. You don't have to let it spill out directly into the terminal, though - the machine has a universal output
connector of sorts, in the form of stdout, and you can connect it to the stdin of other machines with a pipe.

Building a Simple Pipeline

Have a look on your keyboard and see if you can find this little critter: | . It's often (though not always) located on the
same key as the backslash (\). Let's try it on something simple.

© Adafruit Industries https://learn.adafruit.com/basic-shell-magic Page 8 of 15

Suppose you wanted to see the end of the word list, but starting from the last word and working backwards. The sort

utility will be helpful here, especially since it optionally takes the -r argument to reverse its output.

This is called a pipeline, and it's one of the fundamental building blocks of the modern shell. Most traditional shell
utilities will accept standard input and produce standard output.

Pipelines are often simple affairs joining a few basic commands, but they can also be used to express complicated
tasks combining many different operations. Here's a slightly more complicated pipeline to have an ASCII-art cow say
the usernames of people who have logged into a server I run, starting with most recent login:

Next, let's talk about what to do if you want to stash standard output somewhere.

lastlog | egrep -v 'Never|Username|root' | awk '{ print $1; }' | xargs cowsay

© Adafruit Industries https://learn.adafruit.com/basic-shell-magic Page 9 of 15

Redirection To & From Files

Now that you know how to use pipes in between commands, you can do a lot without worrying about storing data in
files. But what if you want to keep something in a file? Let's say you want to:

share a file with other people
keep data for future reference
build up a log file over time
do further work on a file in a text editor like Nano or a spreadsheet application
use data with some other tool which isn't very good at accepting standard input
pull data out of a file and send it to the standard input of a command which doesn't know how to deal with files
on its own

This is where > , >> , and their sibling < come into play.

Writing to a File

If you have output you want to store in filename , just tack > filename onto the end of your command line:

As long as you have permission to write to the specified filename, you'll wind up with a file containing the pipeline's
output. I like to remember that the > character looks sort of like a little funnel.

Appending to the End of a File

Sometimes, you want to stash your output at the end of an existing file. For that, just use >> filename :

Careful! If you redirect output to an existing file, any existing contents will be overwritten. Use >> for tacking
things on to the end of a file.

© Adafruit Industries https://learn.adafruit.com/basic-shell-magic Page 10 of 15

This is often handy for accumulating log files over time, or for building up a collection of data with multiple pipelines.

Reading from a File

Lastly, suppose you want to take the contents of a file and send them to the standard input of some command? Just
use command < filename .

The little funnel is going the other direction now, from the file back into the command.

This one can be harder to remember, because it doesn't come up nearly as often as the first two. Most utilities you'll
encounter are written so that they can read files on their own. Still, it can be a powerful trick that saves you a bunch of
contortions, especially once you get into writing your own scripts and utilities.

A Common Gotcha: Changing a File In-Place

Before long, you might find it natural to try and overwrite the contents of some file by running a command on it and
redirecting the output of that command to the same file.

For example, nl is a command to number the lines of its input. Suppose I decided that the version of a file I've already
saved would be better with line numbers on it? I might be tempted to try something like the following:

Ouch. The whole file seems to be gone. What's happening here? It turns out that the shell opens file.txt for writing
before it ever executes the command pipeline! This makes a kind of sense once you know about it, but it's not

© Adafruit Industries https://learn.adafruit.com/basic-shell-magic Page 11 of 15

especially obvious at first.

Fortunately, there's an easy workaround in this case - use tee :

This does two things:

1. print its stdin back to stdout
2. write its stdin to a given filename

Since tee file.txt isn't executed until after nl file.txt has already run, you wind up with the desired outcome.

© Adafruit Industries https://learn.adafruit.com/basic-shell-magic Page 12 of 15

Standard Error & Exit Codes

The Discontents of Error Messaging

I mentioned stderr earlier, but I glossed over its actual function.

There are some problems with pipelines. One is that if you stream all the output of a command down a pipe to other
commands, and part of that output is an error message, you may never discover that a command reported an error at
all.

Another is that lots of things that might look like an error message could be perfectly valid output (https://adafru.it/exP).
Consider, for example, working with a log file containing the string "ERROR" on some line.

Unix systems have, for a long time, dealt with these problems by exposing a third standard stream. Programs print
error messages and diagnostics to standard error, which (usually) shows up in your terminal even if you've redirected
standard output elsewhere.

You can redirect stderr like you can stdout (and knowing this will come in handy sometimes), but the syntax is kind of
fiddly and weird, and you shouldn't feel guilty if you have to look it up every time (or at least I don't):

© Adafruit Industries https://learn.adafruit.com/basic-shell-magic Page 13 of 15

https://en.wikipedia.org/wiki/Semipredicate_problem

For a concise and well-researched breakdown of the problem, check out Jesse Storimer's When to use STDERR
instead of STDOUT (https://adafru.it/exQ).

Exit Status

As if multiple output streams didn't make for enough extra complexity, there's another way commands signal error
conditions: Every command actually has a numeric exit status, ranging from 0 to 255 , where anything other than 0

signals a failure.

In Bash, you can check the most recent exit status by inspecting the special variable $? .

Exit statuses don't come up directly all that often in interactive use of the shell, but they become interesting once you
start writing shell scripts. We won't get into scripting just now, but if you want to jump right in at the deep end, have a
look at Mendel Cooper's Advanced Bash-Scripting Guide (https://adafru.it/exR).

Redirect stderr (file descriptor 2) to a file command 2> filename

Redirect standard stderr (file descriptor 2) to stdout (file

descriptor 1) and pipe both to another commmand
command 2>&1 | other_command

© Adafruit Industries https://learn.adafruit.com/basic-shell-magic Page 14 of 15

http://www.jstorimer.com/blogs/workingwithcode/7766119-when-to-use-stderr-instead-of-stdout
http://tldp.org/LDP/abs/html/

Concluding Remarks: Composability
The classic Unix utilities are, traditionally, designed to do one or two things well, and fit together with other utilities to
solve problems. This leads to a property known as composability, which is another way of saying that the utilities are
small pieces which can be put together and rearranged in many different ways.

The present-day GNU versions of the utilities (and lots of the other programs that have accumulated in the era of
Linux) relax the only do one thing idea, out of pragmatism and simple feature creep (https://adafru.it/exY), but the basic
idea holds.

Along with text files and the filesystem, standard streams, pipes, and redirection provide the necessary plumbing of a
composable system. Pipelines can be written to explore and solve a huge range of problems by connecting simple
operations together, and most tools can share data with other tools.

There's other shell magic to be learned, but the most important pieces are in place.

Next up, we look at aliases, wildcards, and the basics of treating the shell as a full-featured scripting language: An
Illustrated Guide to Shell Magic: Typing Less & Doing More (https://adafru.it/sds).

© Adafruit Industries Last Updated: 2018-08-22 03:46:27 PM UTC Page 15 of 15

https://en.wikipedia.org/wiki/Feature_creep
file:///an-illustrated-guide-to-shell-magic-typing-less-and-doing-more/overview

	Guide Contents
	Overview
	Input & Output
	Standard I/O & Pipes
	Standard Streams
	Building a Simple Pipeline

	Redirection To & From Files
	Writing to a File
	Appending to the End of a File
	Reading from a File
	A Common Gotcha: Changing a File In-Place

	Standard Error & Exit Codes
	The Discontents of Error Messaging
	Exit Status

	Concluding Remarks: Composability

