Table of Contents

Overview
 • Parts
 • Optional

Raspberry Pi 400 Setup
 • Rapsberry Pi OS
 • Audio Out
 • Software Setup
 • Make sure you’re using Python 3!
 • Python Installation of PCF8591 Library
 • Sonic-Pi
 • Python OSC
 • Sending and Receiving OSC
 • Sending from Python
 • PiTFT Install

Build Control Knob Board with ADC
 • Analog Signals
 • Wire the Pots
 • Perf Board
 • CYBERDECK Hat
 • PiTFT

Use Knob Controller in Python
 • Read Knobs in Python
 • Python Knobs OSC Code
 • Sonic-Pi Script
Overview

Raspberry Pi single board computers are wonderful devices. They can do so many things, including interact with sensors, inputs, and outputs with their GPIO (general purpose Input/Output) pins -- however, analog input and output are not available on the stock Raspberry Pi.

What happens when you want to turn some knobs or slide some faders? No fear, it's simple to add an Analog-to-Digital Converter (ADC) and this guide is going to show you how!

You'll use the retro-tastic CYBERDECK Hat to add some STEMMA QT / Qwiic compatible I2C connectors to the Raspberry Pi 400, and then plug in the PCF8591 Quad 8-Bit ADC + DAC breakout board. The PCF8591 makes it simple to add four potentiometers to your Pi project.

Add a PiTFT to the mix and you'll have a compact and stylish computing setup that you can use for live music coding jams including four knobs to twiddle!
Parts

Raspberry Pi 400 Desktop - Computer Only

Raspberry Pi 400 is a complete Raspberry Pi 4-based personal computer, integrated into a keyboard. The Pi 4 is the first computer from the Pi Foundation that really feels ‘desktop...

https://www.adafruit.com/product/4795

Raspberry Pi 400 Desktop - Full Computer Kit

Raspberry Pi 400 is a complete Raspberry Pi 4-based personal computer, integrated into a keyboard. The Pi 4 is the first computer from the Pi Foundation that really feels ‘desktop...

https://www.adafruit.com/product/4796

Adafruit CYBERDECK HAT for Raspberry Pi 400

Cyber-warriors, listen up here! We’ve got with some zero-day unreleased hardware we just dumpster-dived. Now you can crack kodes, and write skripts with style, thanks to the...

https://www.adafruit.com/product/4863
<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 x</td>
<td>Potentiometer with Built In Knob 10K ohm</td>
<td>https://www.adafruit.com/product/4133</td>
</tr>
<tr>
<td>1 x</td>
<td>Universal Proto-Board PCB 5cm x 7cm</td>
<td>https://www.adafruit.com/product/4786</td>
</tr>
</tbody>
</table>

PiTFT Plus 480x320 3.5" TFT+Touchscreen for Raspberry Pi
Is this not the cutest, little display for the Raspberry Pi? It features a 3.5" display with 480x320 16-bit color pixels and a resistive touch overlay.
https://www.adafruit.com/product/2441

Adafruit PCF8591 Quad 8-bit ADC + 8-bit DAC - STEMMA QT / Qwiic
Measuring voltage and adjusting it is what electronics is all about so you won’t get far without friends like the Adafruit PCF8591 Quad 8-bit ADC + 8-bit DAC...
https://www.adafruit.com/product/4648

STEMMA QT / Qwiic JST SH 4-pin Cable - 100mm Long
This 4-wire cable is a little over 100mm / 4" long and fitted with JST-SH female 4-pin connectors on both ends. Compared with the chunkier JST-PH these are 1mm pitch instead of...
https://www.adafruit.com/product/4210
USB Audio Adapter - Works with Raspberry Pi
The Raspberry Pi has an on-board audio jack, which is super handy for all kinds of sound effects and speech, just plug and go! However, for when you want better audio for music...
https://www.adafruit.com/product/1475

Optional

USB Powered Speakers
Add some extra boom to your audio project with these powered loudspeakers. We sampled half a dozen different models to find ones with a good frequency response, so you'll get...
https://www.adafruit.com/product/1363

10.1" 1366x768 Display IPS + Speakers - HDMI/VGA/NTSC/PAL
Yes, this is an adorable HDMI television with incredibly high resolution and built in 3.5W stereo speakers! We tried to get the best possible HDMI/VGA display with...
https://www.adafruit.com/product/2261
Hook-up Wire Spool Set - 22AWG Solid Core - 6 x 25 ft
Perfect for bread-boarding, free wiring, etc. This box contains 6 spools of solid-core wire. The wire is easy to solder to and when bent it keeps its shape pretty well. We like to have...
https://www.adafruit.com/product/1311

Hakko Professional Quality 20-30 AWG Wire Strippers
These are the finest wire strippers we have used, and if you have to do a lot of wiring, you will agree! They have soft rounded grips - very comfortable to use, and precision ground...
https://www.adafruit.com/product/527

Flush diagonal cutters
These are the best diagonal cutters, large super-comfortable grip to use and have strong nippers for perfect trimming of wires and leads. I've used my pair every day for years.
https://www.adafruit.com/product/152

Raspberry Pi 400 Setup

Rapsberry Pi OS
If you're using the Raspberry Pi 400 Desktop - Full Computer Kit you'll already have an SD card with Rapsberry Pi OS on it. If you are using the Pi 400 Computer Only, you'll need to get an SD card and install Rapsberry Pi OS on it.
With the SD card inserted, plug an HDMI monitor into your Pi 400 using HDMI port 0, plug in a mouse, and then power it up.

I've labeled the HDMI ports in this photo -- sometimes there are issues with playing audio over HDMI when adjusting to certain resolutions and it can be helpful to start off using HDMI port 0.

If this is your first time using the Pi, get started with this excellent book, The Official Raspberry Pi Beginner's Guide, which is available as a free .pdf.

Once your Pi is set up and running proceed with the directions below.

Audio Out
Since the Pi 400 lacks an audio output jack (all audio must be sent over HDMI), we'll plug in a USB sound "card" in order to get audio out to powered speakers, a mixer, or other gear.

Plug this into any USB port on the Pi, then run a 3.5mm TRS cable to the output jack.

Software Setup
Now, make sure you have Python 3 setup, as Python 2 is no longer used or supported.

pip3, is the software package installer you'll use. Upgrade it to the latest version with this command from a terminal:

```
sudo pip3 install --upgrade setuptools
```

If above doesn't work try

```
sudo apt-get install python3-pip
```
Once that has finished you'll be returned to the prompt.

Make sure you're using Python 3!

The default Python on your computer may not be Python 3. Python 2 is officially discontinued and all our libraries are Python 3 only.

We'll be using `python3` and `pip3` in our commands, use those versions of Python and pip to make sure you're using 3 and not 2.

Python Installation of PCF8591 Library

Since each platform is a little different, and Linux changes often, please visit the CircuitPython on Linux guide to get your computer ready!

Once that's done, from your command line run the following command:

```
sudo pip3 install adafruit-circuitpython-pcf8591
```

If your default Python is version 3 you may need to run 'pip' instead. Just make sure you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

Sonic-Pi

You can use the knobs and ADC on your Pi any way you like, but for the purposes of this guide, you should try it out with Sonic-Pi, the live coding music software.

Head to this link and then follow the terminal installation instructions. They look something like this (the version may update after this guide was written, so follow the instructions on that linked page):

```
sudo apt update
sudo apt install ./sonic-pi_3.3.1_1_armhf.deb
```

Python OSC

In order for the knobs to send messages to Sonic-Pi (or other synth software) you'll use OSC (Open Sound Control) which is a modern alternative to MIDI for inter-instrument communications.
One great feature of OSC is its ability to send and receive messages among different programs on the same computer via UDP.

Install the python-osc library by running the following commands from the terminal:

```
pip3 install python-osc
```

Sending and Receiving OSC

Here’s a terrific example of sending OSC messages from a Python script and listening/receiving those messages in Sonic-Pi. I’ve excerpted sections of it here:

```python
live_loop :foo do
  use_real_time
  a, b, c = sync "/osc*/trigger/prophet"
  synth :prophet, note: a, cutoff: b, sustain: c
end
```

In this example we described an OSC path "/osc*/trigger/prophet" which we’re syncing on. This can be any valid OSC path (all letters and numbers are supported and the / is used like in a URL to break up the path to multiple words). The /osc prefix is added by Sonic Pi to all incoming OSC messages, so we need to send an OSC message with the path /trigger/prophet for our sync to stop blocking and the prophet synth to be triggered.

Sending from Python

We can send OSC to Sonic Pi from any programming language that has an OSC library. For example, if we’re sending OSC from Python we might do something like this:

```python
from pythonosc import osc_message_builder
from pythonosc import udp_client

sender = udp_client.SimpleUDPClient('127.0.0.1', 4560)
sender.send_message('/trigger/prophet', [70, 100, 8])
```

Later you’ll create a Python script that reads the knob inputs, and then converts the values and sends OSC messages to be read by Sonic-Pi.
PiTFT Install

Follow these steps () to install the PiTFT in FBCP mode. This mode mirrors the HDMI output onto the PiTFT, and can be used stand-alone, no HDMI monitor required!

Build Control Knob Board with ADC
Analog Signals

Analog signals are different from digital signals in that they can be any voltage and can vary continuously and smoothly between voltages. An analog signal is like a dimmer switch on a light, whereas a digital signal is like a simple on/off switch.

Digital signals only can ever have two states, they are either on (high logic level voltage like 3.3V) or off (low logic level voltage like 0V / ground).

By contrast, analog signals can be any voltage in-between on and off, such as 1.8V or 0.001V or 2.98V and so on.

Analog signals are continuous values which means they can be an infinite number of different voltages. Think of analog signals like a floating point or fractional number, they can smoothly transiting to any in-between value like 1.8V, 1.81V, 1.801V, 1.8001V, 1.80001V and so forth to infinity.

Many devices use analog signals, in particular sensors typically output an analog signal or voltage that varies based on something being sensed like light, heat, humidity, etc. Some examples of sensors with analog outputs:

- Microphones
- Photocells (light sensitive resistors)
- Temperature sensors
- Force-sensitive resistors
- Flex sensors
- Thermistor (temperature sensitive resistor)
- Ultraviolet light sensor
- Light sensors
- Distance sensor
- Anemometer (wind speed sensor)
- Resistive touch screen
- Ultrasonic distance sensor
- Liquid level sensor
- Potentiometer (variable resistor)

Wire the Pots

The four potentiometers will act as voltage dividers, sending anywhere from 0V to 3.3V to their respective ADC pins on the PCF8591.
Voltage dividers work by connecting one of the outer pot legs to ground, the other outer leg to positive voltage (in this case 3.3V), and then the center (wiper) leg to an analog input pin on the ADC.

On a breadboard, you can connect your pots as shown here.

![Diagram of pot connections on a breadboard]

Perf Board

For this finished project, you'll connect your ADC board and pots on a perf board. The perf board has lots of solder points, but none of them are connected by default as is the case with a breadboard. So, you'll wire everything directly.

This diagram shows the connections necessary, however you'll do the wiring underneath the board, so this image is a bit like an x-ray view.
Solid core hook-up wire works well for this type of hand-wired trace circuit.
Once you’ve built the circuit, you should use a multimeter in continuity mode to test that you don’t have any shorts.

CYBERDECK Hat

The CYBERDECK Hat is perfect for adding accessories to the RPi 400. It breaks out all of the GPIO pins at a useful angle, plus it adds convenient STEMMA QT/Qwiic plugs for easy I2C use.

The CYBERDECK also gives us a great place to mount additional boards. This mounting plate allows us to add the knob board to the CYBERDECK.
Download the model from the link below and print it in PLA at 0.2mm layer height, 60% infill.

CYBERDECK Hat mount 3D model

Use M2.5 screws and nuts to fasten the mounting plate to the CYBERDECK Hat.

Use M2 standoffs, nuts, and screws to fasten the knob board to the mounting plate.
With the Pi powered off, insert the CYBERDECK Hat into the GPIO pin slot, being careful to align the pins properly.

PiTFT
You can now add the PiTFT to the CYBERDECK Hat and power up the Pi.
Use Knob Controller in Python

Read Knobs in Python

Time to try things out! Fire up your Pi 400 and then launch a Python editor such as Thonny or Mu.

Copy the code below, paste it into your Python editor, and then run the code by pressing the "play" button.

```python
#!/usr/bin/env python
import time
import board
import adafruit_pcf8591.pcf8591 as PCF
from adafruit_pcf8591.analog_in import AnalogIn

i2c = board.I2C()
pcf = PCF.PCF8591(i2c)

pcf_in_0 = AnalogIn(pcf, PCF.A0)
pcf_in_1 = AnalogIn(pcf, PCF.A1)
pcf_in_2 = AnalogIn(pcf, PCF.A2)
pcf_in_3 = AnalogIn(pcf, PCF.A3)

while True:
    a_val = pcf_in_0.value
    print((a_val))

    b_val = pcf_in_1.value
    print(b_val)

    c_val = pcf_in_2.value
```

©Adafruit Industries
Turn the knobs and you'll see the four values changing, from 0 to 65,535.

Python Knobs OSC Code

Copy the code shown below and paste it into a new empty document in Thonny or Mu. You can save it as `code.py` and then run it.

This will cause the knob readings to send out OSC messages. Next, we'll create Sonic-Pi code to read the messages and play music!
Sonic-Pi Script

Here's a Sonic-Pi script that will listen for the OSC values sent from the knob readings, and use those values to adjust the notes, filter cutoff, sustain, and gain.

Copy this and then paste it into a new buffer in Sonic-Pi.

```sonic-pi
live_loop :knob_patch do
  use_real_time
  a, b, c, d = sync "/osc*/trigger/prophet"
  synth :prophet, note: a, cutoff: b, sustain: c, amp: d
  sleep 0.25
  4.times do  # loop a short arpeggio
    a=a+2
    synth :prophet, note: a, cutoff: b, amp: d
  end
  sleep 0.25
end
```