
All the Internet of Things - Episode Two
Created by lady ada

Last updated on 2019-02-28 06:47:23 PM UTC

Introduction

Hello!

I’d like to welcome you to the second episode of our new series of videos and guides, designed to help you learn
about and make your very own connected objects

This is Adafruit and Digi-Key’s ALL THE INTERNET OF THINGS - a six-part series, covering everything you need to
know about the Internet of Things (which we will shorten to IoT).

For our second guide, we’ll go over the most popular protocols used in the IoT industry, as well as the upsides and
downsides of each type of protocol to help you decide what you’ll use to connect your devices to the internet and
exchange data

PROTOCOLS!

In TRANSPORTS we talked about - “How to Get From Your Device to the Internet” - POWER, DISTANCE, AND
BITS. (https://adafru.it/ChW)

Transports are the physical and wireless means to get the data around - how to get from here to there and back again.
But transports often are not structured - your data shows up in a pile of bits. You may not get your data in order,
correctly or even at all!

On top of the transport layer, we can add another level of quality assurance - PROTOCOL! A protocol can be thought
of as the language each machine, or machines, use to talk to each other. Protocols don’t deal with the messy business
of moving bits to and from, they are a higher level set of rules the machines use to talk to each other.

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 4 of 31

file:///alltheiot-transports

Protocols

The Language of Machines

Let's bring this back to something we can easily relate to, something we all know and use. When humans greet each
other we say hello, we wave, we shake hands. It would be odd if we greeted each-other by throwing an apple, or
whistling a show-tune, or doing a hand-stand. Every language and culture has a way to greet another person and a
way to communicate with human language. And we learn at a very young age how to do this. It makes it easier for
people to work together and share information.

You can think of protocols as the language machines use when they talk to each other.

With the machines we have built and the Internet of Things, we also have a need to communicate. So, we have a
language, and guidelines. There are millions of computers, sensors, actuators, systems on the internet, and for all
things to communicate we need a shared language and rule-set. A shared language allows quick and efficient
cooperation between things, using less programming, power, memory and data transmission.

Protocol Layer

You may remember 7-layer OSI model (still not to be confused with the delicious 7-layer burrito (https://adafru.it/Bss))
from the last episode. We mentioned that this design is very idealized, and that you can't really completely separate
the layers, so transports is pretty much the bottom four layers:

Again, it's really specific to the transport - almost all have built in error correction and reliability management (Ethernet,
WiFi, Cellular...) but some do not (mostly, radios) and so that part of the transport may be something you have to
manage.

The next two layers, Session & Presentation plus maybe a bit of the Segments layer, is what we deal with in the
Protocols section. That's where you'll actually package data up, encode or encrypt it so that you can present it to the
Application layer which is the final product you're making.

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 5 of 31

https://www.tacobell.com/food/burritos/7-layer-burrito

Transports vs Protocols

Going back to our comparison of languages for humans as a way to understand the languages for computers, we can
also use the OSI layer division when talking about human language:

The transport of language can be air - in which case the language will be vocal.

The transport of language can be light - in which case the language will be visual - this is what sign language uses.

The transport of language can also be paper - in which case the language will be written!

Either way, the transport varies but the language itself is the same: English (or Indonesian! or Spanish! etc.) You can
always get the same data across no matter the transport. In this sense, the protocol (language) is transport-agnostic,
just like that OSI layer model above.

Except - its not really....

The way we talk and the way we write does vary. You get intonation when using air, exactness with writing. ASL even
uses the space around the speaker to indicate relationships (https://adafru.it/ChX) and the movements to convey
emotion, irony and puns. So sometimes the transport and protocol bleed into each other a bit.

Likewise, there are some transports that are really incompatible with some protocols - for example you really don't
want to try to run HTTP over Bluetooth Classic, as it would be terribly slow. And SigFox won't work with CoAP due to
the packet size restrictions.

We'll try to call out some of these differences, but be aware that that just because you may be able to interchange the
layers in theory, it can be very difficult to maintain a good customer experience in practice.

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 6 of 31

https://www.signingsavvy.com/blog/41/Setting+Up+People+Places+and+Things

HTTP

Chances are you're familiar with HTTP, but even if you’re not, you’ve seen the letters at the beginning of every website.
Like this one - http://www.adafruit.com

HTTP stands for Hyper Text Transfer Protocol (hey will you look at that, it's even called a protocol!) It’s used by
devices connected internet to send website data back and forth. Note that you may connect to the internet using
Ethernet at work, WiFi at home, or Cellular on the go - but the HTTP part is the same for every website.

Note that while many people assume that the internet is all HTTP, it isn't! It's just the most popular procotol. There are
other protocols you may bump into in your travels, such as the once-popular FTP (File Transfer
Protocol) (https://adafru.it/ChY) which is used to transfer files around, and SMTP (Simple Mail Transfer Protocol)
 (https://adafru.it/ChZ)which is how your e-mail gets delivered.

Stateless-ness

HTTP is stateless, so you have to have a connection per data transfer - one connection every time you want to write
data, one connection for reading. (You can use persistent to keep the connection open (https://adafru.it/Ch-) but many
simplified microcontroller stacks assume one connection per request, and its considered bad taste to keep it open
indefinitely - eventually the server will kick you out!) HTTP is optimized for huge amounts of data such as used for
websites, and it can be used for IoT connections. But it's not lightweight: there's a lot of headers and encoding per
request. And it’s not that fast when it comes to .

Internet of TOAST

Another problem with HTTP is that it's pull only. Let’s say you have an IoT device- Internet of Toaster - this toaster is
connected to the Internet and can send you toast updates, as well as have its settings managed securely online.

With HTTP, your toaster can easy send data to the server whenever it wants (e.g. "Toast is done!") by connecting and
submitting a REST PUT request. But if it wants to pull data from the server via REST GET, it has to constantly connect
and ask ("Any updates to the Toast darkness level?" "What about now?" "Anything now?") which is really data and time
consuming. Pull updates are either slow (check only every few minutes) or data/power intensive (check constantly).

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 7 of 31

https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://en.wikipedia.org/wiki/HTTP_persistent_connection

To Summarize!

HTTP is:

asynchronous protocol, this means the client waits for the server to send the data.
a one way street, only the client makes the request.
one to one protocol, one client request at a time.
data heavy, filled with headers and rules.

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 8 of 31

Take a REST

REST (Representational State Transfer) isn’t exactly a protocol, technically that's HTTP's domain only. It lives a layer
above HTTP. REST is more like a data-interfacing style that works for well IoT. But since it’s based so heavily on top of
HTTP, the two words are often used interchangeably.

REST is a well established standard for transmitting data, it is very internet friendly. If you’re online, just about every
web service uses REST both internally and externally. Every modern computer & programming language has REST API
(application program interface) support, so it’s very fast to get started, and if your device is going to talk to public
‘utilities’ like IFTTT, Facebook, Twitter, etc it will need to use REST.

Four Magic Words

There are four ways to move data around:

1. GET (request data)
2. PUT (send data)
3. POST (create data)
4. DELETE (natch)

Every web-browser uses these commands to get and put the data use use on the internet. And the data you
get/put/post/delete is stored in ‘buckets’ called resources. The names of these buckets are also known as URLs -
Universal Resource Location!

Restful URLs

So lets say you want to query the adafruit twitter account. You can go to the twitter.com server using http
(http://www.twitter.com (https://adafru.it/Ci0)) and then request the adafruit resource
(http://www.twitter.com/adafruit (https://adafru.it/Ci2)). This will give you a huge amount of data, but you can ‘drill down’
by adding more /’s and subcategories. So to read the post with our video visiting the NYC Formula E Series race go to
https://twitter.com/adafruit/status/900750127425630208 (https://adafru.it/Ci6) - that big long number is a unique
identifier for the tweet.

What makes it RESTful is that each / section gets more specific - the adafruit account, then the statuses, and finally the
unique status #.

What your web browser gets when it goes to those URLs is a huge amount of HTML (Hyper Text Markup Language).
You can see it by using View Source...

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 9 of 31

http://www.twitter.com
http://www.twitter.com/adafruit
https://twitter.com/adafruit/status/900750127425630208

which looks like this (we pulled out just a section that shows a tweet)
<div class="js-tweet-text-container">
<p class="TweetTextSize TweetTextSize--normal js-tweet-text tweet-text" lang="en" data-aria-label-part="0">2017
is almost over, and we're celebrating another great year with a Circuit Playground Express sale! See <a
href="https://t.co/lMXdvG9KLo" rel="nofollow noopener" dir="ltr" data-expanded-url="http://adafruit.com/sale"
class="twitter-timeline-link" target="_blank" title="http://adafruit.com/sale" >
http://adafruit.com/sale for deets

<a href="/hashtag/adafruit?src=hash" data-query-source="hashtag_click" class="twitter-hashtag pretty-link js-nav"
dir="ltr" ><s>#</s>adafruit <a href="/hashtag/adafruitsale?src=hash" data-query-
source="hashtag_click" class="twitter-hashtag pretty-link js-nav" dir="ltr" ><s>#</s>adafruitsale
<a href="/hashtag/circuitplayground?src=hash" data-query-source="hashtag_click" class="twitter-hashtag pretty-
link js-nav" dir="ltr" ><s>#</s>circuitplayground</p>
</div>

You can see the text of the tweet (https://adafru.it/Ci7) is embedded in there

2017 is almost over, and we're celebrating another great year with a Circuit Playground Express sale! See <a
href="https://t.co/lMXdvG9KLo" rel="nofollow noopener" dir="ltr" data-expanded-url="http://adafruit.com/sale"
class="twitter-timeline-link" target="_blank" title="http://adafruit.com/sale" >
http://adafruit.com/sale

While you could, in theory, parse a webpage’s HTML via your device, its a hairy and unpleasant business that breaks
very easily (https://adafru.it/Ci8). So, instead, most services online provide a REST API which is simplified and machine-
friendly. In those cases, the data is usually encoded with JSON or XML, rather than HTML, but still using HTTP.

Here are some examples of REST APIs:

IFTTT (https://adafru.it/Ci9)
Twitter (https://adafru.it/Cii)
GitHub (https://adafru.it/Cij)

Since we are using HTTP, the connection does not have ‘state’: the client connects to the REST API when needed,

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 10 of 31

https://twitter.com/adafruit/status/941022471159009280
https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags
https://platform.ifttt.com/docs/api_reference
https://developer.twitter.com/en/docs
https://developer.github.com/v3/

transferring data to/from the resource. When it’s done, it closes the connection.

On one hand, this is nice because you have a burst of data transmission, and then a disconnection so the server
doesn’t need to hold the connection open. But the downside is you have to setup and tear-down the connection each
time, and that can take up a ton of data.

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 11 of 31

XML

XML

XML stands for eXtensible Markup Language. XML is a markup language much like HTML that you saw in the previous
page, and looks the same too! XML was designed to be self-descriptive, in other words, when you look at it, it should
be clear what is is based on the tags you define, sorta like HTML uses when it wants to describe an image, and to

mark up bold text. But, XML has fallen out of favor due to it’s parsing complexity and verboseness.

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 12 of 31

JSON

JSON

These days, you’ll see JSON most often. (JavaScript Object Notation) is a lightweight data-interchange format. It is
easy for humans to read and write, and despite being based on JavaScipt language standard you do not need to use
JavaScript - you can use any language. It is easy for machines to parse and generate.

What's the Difference?

XML is a markup language, JSON is a way of representing objects. Generally speaking, JSON is preferred for IoT
applications since it can self-describe and is more programmatic, where XML was made for document mark up like
HTML.

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 13 of 31

API Example

JSON API Example

For example, lets look at a public JSON API example. There’s not a ton of public APIs, most require authentication, but
github has some public data available: https://api.github.com/users/adafruit (https://adafru.it/Cik) here’s what you’ll get
(of course some dates and numbers may vary)

As you can see, the JSON data is very structured but pretty simple. You can see the location is a string:

"location": "New york city",

“New York City” but the number of public repositories (public_repos)

"public_repos": 838,

is a number 838 and other entries are URLs of their own,

"avatar_url": "https://avatars3.githubusercontent.com/u/181069?v=4",

boolean values,

{
 "login": "adafruit",
 "id": 181069,
 "avatar_url": "https://avatars3.githubusercontent.com/u/181069?v=4",
 "gravatar_id": "",
 "url": "https://api.github.com/users/adafruit",
 "html_url": "https://github.com/adafruit",
 "followers_url": "https://api.github.com/users/adafruit/followers",
 "following_url": "https://api.github.com/users/adafruit/following{/other_user}",
 "gists_url": "https://api.github.com/users/adafruit/gists{/gist_id}",
 "starred_url": "https://api.github.com/users/adafruit/starred{/owner}{/repo}",
 "subscriptions_url": "https://api.github.com/users/adafruit/subscriptions",
 "organizations_url": "https://api.github.com/users/adafruit/orgs",
 "repos_url": "https://api.github.com/users/adafruit/repos",
 "events_url": "https://api.github.com/users/adafruit/events{/privacy}",
 "received_events_url": "https://api.github.com/users/adafruit/received_events",
 "type": "Organization",
 "site_admin": false,
 "name": "Adafruit Industries",
 "company": null,
 "blog": "www.adafruit.com",
 "location": "New york city",
 "email": null,
 "hireable": null,
 "bio": null,
 "public_repos": 838,
 "public_gists": 1,
 "followers": 0,
 "following": 0,
 "created_at": "2010-01-12T23:57:58Z",
 "updated_at": "2017-08-23T10:11:22Z"
}

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 14 of 31

https://api.github.com/users/adafruit

"site_admin": false,

etc.

Since JSON is text-based you can really toss whatever data you like in there. If you need to store binary data, you’ll
need to textify it, using something like Base64 encoding. (Compare this to MQTT where the data is not text based but
raw binary and can be parsed however you like)

XML API Example

The URL itself can end up becoming a data transport of its own. For example Yahoo’s weather API has URLs like this:

Note the format=json (https://adafru.it/Cim) part of the URL. When you go here you'll get JSON data (we've added line
breaks for legibility)

If you rewrite the URL to have format=xml () you can see the XML output:

You can see the data is the same, but the format is a little different.

https://query.yahooapis.com/v1/public/yql?q=select%20item.condition.text%20from%20weather.forecast%20where%20woeid%20in%20(select%20woeid%20from%20geo.places(1)%20where%20text%3D%22NYC%2C%20NY%22)&format=json&env=store%3A%2F%2Fdatatables.org%2Falltableswithkeys

{
 "query": {
 "count": 1,
 "created": "2017-09-05T04:27:15Z",
 "lang": "en-US",
 "results": {
 "channel": {
 "item": {
 "condition": {
 "text": "Clear"
 }
 }
 }
 }
 }
}

<query yahoo:count="1" yahoo:created="2017-09-05T04:28:53Z" yahoo:lang="en-US">
 <results>
 <channel>
 <item>
 <yweather:condition text="Clear"></yweather:condition>
 </item>
 </channel>
 </results>
</query>
<!-- total: 11 -->

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 15 of 31

https://query.yahooapis.com/v1/public/yql?q=select%20item.condition.text%20from%20weather.forecast%20where%20woeid%20in%20(select%20woeid%20from%20geo.places(1)%20where%20text%253D%2522NYC%252C%20NY%2522)&format=json&env=store%253A%252F%252Fdatatables.org%252Falltableswithkeys
https://query.yahooapis.com/v1/public/yql?q=select%20item.condition.text%20from%20weather.forecast%20where%20woeid%20in%20(select%20woeid%20from%20geo.places(1)%20where%20text%253D%2522NYC%252C%20NY%2522)&format=xml&env=store%253A%252F%252Fdatatables.org%252Falltableswithkeys

RESTfull

RESTfull

If a web service/API supports REST it’s called RESTful, this means it sticks to some common architectures so many
programming languages can work with it.

The vast majority of online APIs are RESTfull

Why Use REST?

The number one reason you'll be using REST is that REST runs over HTTP, so any device that is on the web can use a
REST API.

For example, a single board computer with Linux on it, or a cellular module, will already have a TCP/IP or HTTP stack
built in. You've got an easy way to hook into a wide variety of services, both for storing data but also to grab data!

Also, many applications for IoT are about the “state” of device, and that’s why REST is used so much. Say you have a
light-bulb that you are making IoT. The light-bulb has a state - whether it's on or off. The light-bulb can transmit it's state
state “I’m a light, I am on” with a GET request to http://www.server.com/lightbulb/3292 (for lightbulb # 3292). You can
also PUT the state back to that URL to turn the bulb on, or off. In these examples the programming and model fit the
model of the device you are internetifying!

Yay! We're Done!

OL, so we’re done, this solves everything for IoT, just use REST and that’s it? Not so fast! In fact, that’s the problem,
with REST it’s ALL request / response, this means every time you want to do something you need to request it and get
the response. That can lead to tons of requests, lots of data usages, battery drain, and slow responses.

Surely there’s another way?

As you’ve seen from the TRANSPORTs episode (https://adafru.it/Cio), some of our transports like cellular or LoRa, you
end up paying per byte, per message, or working with a very restrictive bandwidth. In those IoT transports, you’ll want
a simple & lightweight protocol with push and pull.

Let’s take a look at a few more options!

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 16 of 31

file:///alltheiot-transports/

MQTT

MQTT (Message Queue Telemetry Transport) has become the most popular and essentially the second standard IoT
protocol (besides HTTP+REST).

Note that even though it is called M.Q.T.Transport, we’ll be referring to it as IoT protocol since it does session
management.

One confusing thing about the name, it does not really queue messages (it’s more of a store-retrieve model). This is
why you may see it called MQ Telemetry Transport.

MQTT is an open, royalty-free and an OASIS open standard as of 2014. (https://adafru.it/f29)

The Origins of MQTT

MQTT stands for MQ Telemetry Transport. It is a publish/subscribe, extremely simple and lightweight messaging
protocol, designed for constrained devices and low-bandwidth, high-latency or unreliable networks. The design
principles are to minimise network bandwidth and device resource requirements whilst also attempting to ensure
reliability and some degree of assurance of delivery. These principles also turn out to make the protocol ideal of
the emerging “machine-to-machine” (M2M) or “Internet of Things” world of connected devices, and for mobile
applications where bandwidth and battery power are at a premium.

MQTT was invented by Dr Andy Stanford-Clark of IBM, and Arlen Nipper of Arcom (now Eurotech), in 1999.

MQTT was developed at IBM in the late 1990s, it was used to link oil pipeline sensors with satellites. The oil pipeline
sensors and controls were not high speed, did not require a lot of data and were not near infrastructure.

The up/downlink used satellites that would move in and out of range, so HTTP would have been a very bad protocol to
use because it requires a durable underlying transport.

Instead, the network needed something more flexible and understanding of failures and dropouts. One interesting
piece of MQTT is that the protocol manages messages asynchronously. That is: the server/broker in an MQTT network
can hold and forward messages from client to client so if one gets disconnected, it will be able to fetch the message
when it reconnects later.

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 17 of 31

http://mqtt.org/

To keep things simple and allow bi-directional message passing, MQTT uses a publish and subscribe model.

Simple & Light

MQTT is a simple and well designed protocol, and it turns out that the same protocol used for oil pipeline sensors and
satellites is handy for IoT. It's extremely simple and lightweight. The packet structure uses binary as much as possible
for compactness. Compare this to HTTP and REST where data is encoded in unicode or ASCII.

Here's the structure of the CONNECT packet, which you use when initializing the connection.

You'll also need to transmit some subscription packets, but overall, connecting to a server only takes about 80 bytes
(certainly less than 1KB).

You stay can connected all the time and send 2-byte ping packets every few seconds to verify connectivity, or connect
once in awhile to manage messages.

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 18 of 31

 Every data 'publication' (push data from client to broker) and data 'subscription' (push data from broker to clients) is as
little as 20 bytes.

Publication to subscription delay - the time it takes from when one client publishes data, to when that data is made
available to subscriber clients, is instant.

The connection is single ‘socket’ so overhead is at a minimum. This makes connections and data super fast, Facebook
uses it for the billions of people who use messenger on mobile (https://adafru.it/Cip)

The single-socket state-full connection does have a tradeoff in that, while not a lot of data is transmitted, it does have
to hold that socket connection open. On the other hand, connections are so light and fast, maybe your publication
application is OK with connecting every time needs to send data. There's flexibility for you to experiment with!

MQTT Topics

Just like REST has text-based URLs
(like https://twitter.com/adafruit/status/900750127425630208 (https://adafru.it/Ci6)) MQTT can has text-based topics.

Like REST, MQTT can manage arbitrary-data payloads to and from those topics.

You can send text or binary (a photo for example) - you don't have to encode the data if you don't want. As long as the
clients can parse the data, you can use it. You can transmit any packet of data up to a theoretical max of 256 MB
(although, in reality most brokers and clients don’t expect more than a few KB since for huge payloads you would want
a more durable protocol that manages re-transmits, better error correction, etc.)

We'll cover topics in more detail in the next sections

Small, Code-wise

Unlike HTTP, there isn’t a lot of "build up a connection" and then "tear it down" overhead, as you saw above, the
packets are small, and once you CONNECT you can PUBLISH and SUBSCRIBE immediately without any other headers.
That means we can stream data in and out of multiple 'topics' quickly and easily.

The compactness makes it easy to adapt to any transport since there are no underlying layers that you have to depend
on - while the vast majority of MQTT clients run on top of TCP/IP, it isn't a requirement - you can run on any low level
transport with bi-directional data.

Since the protocol's state-machine is simple, full MQTT clients can fit in microcontrollers with as little as 32KB of Flash
and 2KB of RAM, such as our Adafruit_MQTT (https://adafru.it/fp6) client.

The 'official' client is Paho, which has a wide variety of ports to your favorite language (https://adafru.it/Ciq)

Don't Forget Your Gateway!

While MQTT can run on top of any kind of transport, whether it be a mesh network, TCP/IP, Bluetooth, etc. If you are
using Bluetooth, XBee, Bluetooth LE, or another non-Internet-connected protocol & device, you will need a gateway to
get data to and from the Internet.

For example, the Adafruit Bluefruit Connect app has a BLE to Internet gateway that you can use for MQTT
'tunneling' (https://adafru.it/yb7)

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 19 of 31

https://www.ibm.com/developerworks/community/blogs/mobileblog/entry/why_facebook_is_using_mqtt_on_mobile?lang=en
https://twitter.com/adafruit/status/900750127425630208
https://github.com/adafruit/Adafruit_MQTT_Library
https://www.eclipse.org/paho/
file:///bluefruit-le-connect-for-ios/mqtt

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 20 of 31

Brokers & Clients

MQTT has some terms that make it easy to remember, what does what.

There are two types of players in MQTT, a broker and a client. Compare it with REST we have a 'server' and then
'clients' that connect, the naming is different because the 'server' in MQTT is also managing data between clients. But,
it functions in almost-the-same way

There’s only one broker, but there can be multiple clients.

The broker is considered the ‘reliable’ one in the relationship - even if the connection goes out, the broker is
expected to be available whenever the transport is working.
The broker gets all the published messages from the clients and stores them in a database or memory.
The broker then delivers the messages to the subscriber clients.

In general, the MQTT broker is not what we spend a lot of time engineering as there are many great free broker
softwares (we're partial to Mosquitto (https://adafru.it/pey)), as well as dozens of broker services you can pay for that
will do all the management for you. For example, Microsoft Azure (https://adafru.it/Cis), AWS IoT (https://adafru.it/Cit),
even our very own adafruit.io (https://adafru.it/fsU)

The part you will be most involved in is the client - that’s part of your application, whether it be a sensor, robot, or...
toaster!

Broker & Clients Example

Here's an example showing the way brokers and clients interact

Let's say you have your internet of toaster at home (it has a WiFi chip, and is on your home network). And you have a
geotracker in your car (a cellular+gps connection).

There's 2 ways you could have the two devices 'talk' to each other

1. Have one of the devices run as a 'server' with an IP address, so that the other sensor can connect to it at any time
2. Have a third 'server' somewhere, both toaster and car connect to that computer server and the computer sends

messages back and forth.

Option #1 is in a sense, the 'least expensive' because no extra computer is needed. However, it's crazy difficult to pull
off because the toaster or car have to be constantly waiting for a connection. And the other device needs to know the
IP address of the listener. And then, what happens if a third device is involved?

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 21 of 31

https://mosquitto.org/
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-mqtt-support
http://docs.aws.amazon.com/iot/latest/developerguide/protocols.html
https://io.adafruit.com/

Thus, we go with option #2 - the server that handles the messages? That's the MQTT Broker and the car and toaster
are both MQTT Clients. You can now easily add more clients to add or monitor data, such as your mobile app
(CyberToastApp, now available at the iTunes store?)

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 22 of 31

MQTT Topics

OK so now you know you need a broker, and you've got a few clients to connect up. You've loaded up your MQTT
client software. Now what? How do you actually send/receive data?

Remember we mentioned that the whole point of protocols was to take the pile o' bits from the transport layer and
organize them! With REST, the data is organized into URLs, but with MQTT we use topics.

Much like REST's GET/POST commands that reference a URL, MQTT clients publish and subscribe to a topic. And, like
URLs, topics use / delimeters and ascii-text categorization.

We'll cover wildcards later, suffice to say that while REST strongly recommends, but does not require, true hierarchical
URLs, because there's often meta-data in a REST call that can give more information, MQTT only has the topic name.
So it's really important to have and consider MQTT topics a proper hierarchy.

Topic Hierarchy

Much like you would sort your files like

Documents/School/English/midterm.doc

or

Documents/Work/Presentation/Q3Sales.ppt

topics have a hierarchy.

We'll cover wildcards later, suffice to say that while REST strongly recommends, but does not require, true hierarchical
URLs (because there's often meta-data in a REST call that can give more information) MQTT only has the topic name.
So it's really important to have and consider MQTT topics a proper hierarchy.

Factory Temperature Network

Lets say you have a factory and you wanted to make temperature sensors placed on the HVAC units on each floor in
your building publish their temperature, you could set up your topics like so:

sensors/FLOOR/temperature/HVAC_UNIT_ID

So, when we setup the topics, they'll look like this:

The third floor main AC would be sensors/fl3/temperature/AC
The tenth floor boiler would be sensors/fl10/temperature/boiler
The fourth floor heater would be sensors/fl4/temperature/heater
etc.

You don't have to organize the factory exactly like so, you have flexibility on how many layers of hierarchy you want,
and what would be considered a super or sub category. But, you'll want to figure it out fast because its not easy to
change once you've started pushing and storing data!

Dynamic or Pre-defined Topics?

Most brokers require you to set up your topics ahead of time and will not let you publish or subscribe to non-existent

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 23 of 31

topics (this is good for avoiding typos and corrupted data).

Others are flexible - whenever a publication comes in for a topic, that topic will be automatically created. This is good
when you have a dynamic sensor network with new nodes joining without warning, so that you don't have to log into
the server to tell it "hey we added another temperature sensor on the roof"

However, its much more likely that when a client subscribes to a topic, the brokers will send an error if that topic does
not exist yet.

Publications to Subscriptions

By default, MQTT brokers were not designed to store or log data (they can, of course, but it's not a requirement of
protocol)

The broker's job is quite simple. Whenever a client publishes a message to the topic on the broker, the broker will
immediately send the message to all the clients that have subscribed to that topic.

That’s it!

Using Topics For Configuration Changes

Using the topic model, you can do a lot with a little. For example, you can develop clients to only use specific topics to
publish data to, and subscribe to a topic for configuration changes.

For example, say you have a remote cellular temperature sensor that publishes data to your broker under the
sensors/outpost/temperature. Every temperature measurement requires power and data, so you don't want to transmit
more than you need to. You could try to hard-code an algorithm for how often to measure (maybe more during the day
than during night) or you could have a configuration client publish to the sensors/output/temperature_frequency topic.
Then the sensor will be able to get updates at the next connection, and know to change the frequency of
measurements. This kind of thing is possible with REST, but its not as elegant with polling as with a subscription-push.

Data Formatting & Typing

One thing to note is that topics don’t have strict typing built in. HTTP for example, has data encoding on transfer in the
headers. And if you remember in the REST JSON example, each element of the JSON collection had a type like a
string, boolean or url - That's because its ascii-encoded.

With MQTT, to keep things light, we don't have any existing structure. There’s nothing stopping a client in your
factory’s MQTT network from uploading a binary cat photo to the temperature topic. This is unlike REST where you

have more control over data checking. Now, you can add code to your MQTT broker that will scrub bad data out for
you, but it’s not built in! So either be careful with your topics and do the data checking on the client pub/sub or
perhaps have another client that subscribes to all topics and looks for bad data to clean up.

Topic Wildcards

There is one clever trick that the broker can do with topics, that you cannot do with REST: wildcards! With wildcards,
any client can subscribe to any part of that topic, rather than a fully qualified topic.

So, given our earlier factory example, maybe you want to subscribe to everything at at your location, or maybe only
sensors on the 3rd floor, or maybe just a specific temperature sensor. Especially if you have new clients joining in,
wildcards will take care of the groupings for you.

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 24 of 31

There are two wildcards available, # and +

+ wildcard is used to get a single level of hierarchy. Here’s an example wildcard topic:

sensors/fl3/temperature/+

This topic would let you monitor all of the temperature sensors on the 3rd floor.

You can get even more advanced with wildcard subscriptions with something like:

sensors/+/temperature/+

Note that there are two + wildcards here! This topic would get all the temperature data on all floors, that are publishing
to a temperature topic. And you’d get updates any time one of those sensors were published.

wildcard can be used as a match for all remaining levels of hierarchy.

For example if you wanted all to subscribe to everything going on all floors, you’d use:

sensors/#

Or maybe you want to listen in on all 10th floor sensors:

sensors/fl10/#

As you can see, thinking through your topic hierarchy is required if you want to take advantage of the + and #
wildcards!

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 25 of 31

MQTT QoS

MQTT QoS (Quality of Service)

MQTT has some basic Quality of Service (QoS) capability built in. Basically, say you were using MQTT over a radio, and
your toaster is sending radio signals to some base station...there's a chance those messages won't arrive.

Depending on your type of data and the underlying transport, you may have different requirements for how reliable
you want MQTT to be. More reliability means more data transmissions, and more code management. This is mostly
managed by the broker, but the client can request certain QoS

QoS 0 - Fire and Forget

The simplest QoS is called 0 - in this QoS, the broker/client will deliver the message once, with no confirmation. This is
best used when your underlying transport is very reliable, say TCP/IP, or when you want to conserve power and data at
the trade of consistancy

For example, say you have a GPS vehicle tracker that sends location data over cellular every 30 minutes. If your tracker
is running over a long period of time it might be OK if once in a while, a GPS location is ‘dropped’. You just want to get
most messages so you have an idea of where your truck is. It's more important that you conserve battery because the
cellular network has reliability and re-transmission built in - if you are outside range you don't want to keep re-trying,
you'll use up your battery!

QoS 1 - Delivered at least once

The next step up is QoS 1. In this QoS, the broker/client will deliver the message at least once, with confirmation
required. These are called ACKs and you'll get an ACK for every publication, subscription, etc. You'll need to send an
ACK from the broker and the client!

For example, you have an IoT AC unit that is monitored and controlled remotely. When you send a message for it to
turn on you want to make sure it turns on! If you send a message and the transport fails, you can just keep sending
messages over until you get a reply from the broker.

This QoS is what most people use. It's a good balance!

QoS 2 - Deliver only once

Finally, you have QoS 2, the greatest of the QoS's! In this QoS, the broker/client will deliver the message exactly once

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 26 of 31

by using a four step handshake.

This one is not as common because it’s very hard to really guarantee single-delivery without a rock solid
transport (https://adafru.it/Civ). So you will want to consider a feedback system using different topics and sensors
instead!

For example, you have a robotic tractor that you send commands like “Move forward 50 meters” - you want to make
sure that you don’t accidentally send two messages and it turns out it moved 100 meters! Since QoS 2 is a bit of a
pain, you may want to change this to, instead, use two topics: one that sends the movement command from controller
to tractor, and then another one from the tractor to controller that gives the current location.

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 27 of 31

https://en.wikipedia.org/wiki/Byzantine_fault_tolerance

MQTT Extras

There's three more little extras that you can use with MQTT

Retained Messages

Technically there is no base requirement for the MQTT broker to store your data once the subscriptions have been
sent. But you can request or configure retained messages with your broker!

If you've enabled retained messages, the broker will keep a copy of published messages, even after they are sent to
all the subscribers. If a new subscription is made by a client after the publication, and there is a previously sent and
retained message for that topic, the retained message will be sent immediately.

The “last known good” retained message can be handy for remote configurations, when a topic isn’t updated that
often, but you are adding new clients that are subscribing to the topic.

For example, say you have a remote controlled light bulb. The light bulb can be ON or OFF and receives message from
other clients via the broker over WiFi. But, oh no! The WiFi router went down. When the WiFi comes back on, the light
bulb may not know if there was an ON/OFF request that came through while the WiFi was down. It can connect and re-
subscribe to get that retained message which will let it know what the last state was set to.

Clean Session / Durable Connections

A client can set a “clean session” flag - that’s like a clean start if you want to start from scratch or not.

If it’s set to false the connected client is considered “durable” this means when the client disconnects, all the
subscriptions store will remain and any QoS messages will be stored until it connects again.

If the session is clean and marked as true, all subscriptions will be removed then the client disconnects.

This is useful if you want to minimize the setup of clients in an oft-disconnected transport, the client is already identified
to the broker by the CONNECT packet so it avoids having to re-send all the SUBSCRIBE requests on every connect.

Last Will

The Last Will is sort of the opposite of the Retained Message. Whereas retained messages allow a client to find out if
they missed a message on connection, Last Will lets a client send a final message on unexpected disconnection. Last
Wills have a topic & QoS - it’s basically just a pre-set publication.

Say you have a piece of industrial equipment that is controlled by a large relay, the relay is connected over MQTT as a
client to the factory/machine/relay topic that will let it know whether the relay should be ON or OFF.

Another client is the controller, it sends the commands to the relay. There's a risk that the controller may fall off the
network somehow, and the relay will be operating without a controller. In this case, the 'safest' setting for the machine
is to have the relay be off. So, the controller client sends a Last Will to the factory/machine/onoffrelay topic with the
OFF message. If the broker doesn't hear from the controller in a pre-set amount of time, it will send send the last will to
all subscribers.

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 28 of 31

CoAP

The last protocol we'll cover is CoAP (https://adafru.it/Ciw) - Constrained Application Protocol

CoAP is a bit like REST but pared down to be as light as MQTT.

REST-isms

Like REST, it has GET/PUT/POST/DELETE to URLs behavior. But unlike REST, it has a very light and simple packet
structure that is designed to be as minimal as possible, with binary data representation for commands and data
whenever possible.

Stateless and Sessionless

HTTP/REST uses sessions but is stateless, you're expected to disconnect after data is transmitted. MQTT uses the idea
of a ‘session’ or continuous connection (e.g. one socket, one session).

CoAP is not only stateless (per connection), it's sessionless: data is sent and requested at any time, somewhat like if
you had MQTT but without a connection state.

That means you could run CoAP on a transport like UDP, SMS, packet radio or satellite where it’s hard to get
immediate responses!

Server/Client one-to-one model

Like REST, the server doesn’t manage many-client message routing. Each client connects to the server and
sends/requests data. BUT like MQTT, the client can become an ‘observer’ to get frequent asynchronous updates to a
topic of interest (that way it’s not polling like traditional REST)

Watch your Transport!

About that stateless connectivity - on the Internet usually UDP is used. But that can be a problem with firewalls that
often block individual ‘random’ packets and only permit outgoing TCP connections (you can run CoAP over TCP like
Particle but it isn’t as common) but then you sort of lose the benefit of UDP.

This is most relevant when running on cellular & WiFi where you’ve got a direct Internet connection. Another downside
is that since each message is stand-alone you cannot have any fragmentation - each message must fit in a single
ZigBee, UDP, sigfox, etc. packet.

REST Interoperability

The biggest benefit to CoAP is it’s similar enough to REST that you can use it to easily transfer data between web
applications because in theory its designed to be interoperable. And, there’s more stuff built into the protocol for data
formatting and resource querying. But we don’t see CoAP used very often so it’s hard to say if people are really taking
advantage of it!

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 29 of 31

http://coap.technology/

What to Use?

There's a few other protocols that you might bump into on your IoT journey but we covered the big Three: HTTP/REST,
MQTT and CoAP.

Even though protocols and transports are two layers of your IoT network, they aren't completely independent.

In particular, you'll likely be using REST whenever you have a transport that has high bandwidth and speed - like
Ethernet, when your transport is Internet-connected and talking to online services.
MQTT is most often used when your transport has battery, bandwidth or packet size restrictions, like WiFi or
Cellular.
Finally, CoAP is there when you have very-low bandwidth stateless connections like LoRa, ZigBee or Bluetooth.

Once you've picked your transport and protocol, you can take the next step and start sketching out your IoT network.
That will mean determining what services you will be using.

Until then, arrivederci, auf wiedersehen and goodbye!

© Adafruit Industries https://learn.adafruit.com/alltheiot-protocols Page 30 of 31

Demo Time!

© Adafruit Industries Last Updated: 2019-02-28 06:47:23 PM UTC Page 31 of 31

	Guide Contents
	Introduction
	Hello!
	PROTOCOLS!
	Protocols
	The Language of Machines
	You can think of protocols as the language machines use when they talk to each other.

	Protocol Layer
	Transports vs Protocols
	Except - its not really....

	HTTP
	Stateless-ness
	Internet of TOAST
	To Summarize!
	Take a REST
	Four Magic Words
	Restful URLs

	XML
	XML

	JSON
	JSON
	What's the Difference?

	API Example
	JSON API Example
	XML API Example
	RESTfull
	RESTfull
	Why Use REST?
	Yay! We're Done!
	MQTT
	The Origins of MQTT
	Simple & Light
	MQTT Topics
	Small, Code-wise
	Don't Forget Your Gateway!
	Brokers & Clients
	Broker & Clients Example
	MQTT Topics
	Topic Hierarchy
	Factory Temperature Network

	Dynamic or Pre-defined Topics?
	Publications to Subscriptions
	Using Topics For Configuration Changes
	Data Formatting & Typing
	Topic Wildcards
	MQTT QoS
	MQTT QoS (Quality of Service)
	QoS 0 - Fire and Forget
	QoS 1 - Delivered at least once
	QoS 2 - Deliver only once
	MQTT Extras
	Retained Messages
	Clean Session / Durable Connections
	Last Will
	CoAP
	REST-isms

	Stateless and Sessionless
	Server/Client one-to-one model
	Watch your Transport!
	REST Interoperability

	What to Use?
	Demo Time!

