
Adafruit SGP30 TVOC/eCO2 Gas Sensor
Created by lady ada

https://learn.adafruit.com/adafruit-sgp30-gas-tvoc-eco2-mox-sensor

Last updated on 2024-03-08 02:56:14 PM EST

©Adafruit Industries Page 1 of 29

3

6

7

13

13

20

20

27

Table of Contents

Overview

Pinouts
• Data Pins
• Power Pins:

Arduino Test
• Wiring
• Install Adafruit_SGP30 library
• Load Demo
• Baseline Set & Get

Arduino Library Docs

Python & CircuitPython Test
• CircuitPython MicroController Wiring
• Python Computer Wiring
• CircuitPython Installation of SGP30 Library
• Python Installation of SGP30 Library
• CircuitPython & Python Usage
• Baseline Set & Get

Python Library Docs

WipperSnapper
• What is WipperSnapper
• Wiring
• Usage

Download
• Files:
• Schematic STEMMA QT Version
• Fabrication Print STEMMA QT Version
• Schematic & Fabrication Print Original Version

©Adafruit Industries Page 2 of 29

Overview

Breathe easy with the SGP30 Multi-Pixel Gas Sensor, a fully integrated MOX gas
sensor. This is a very fine air quality sensor from the sensor experts at Sensirion, with
I2C interfacing and fully calibrated output signals with a typical accuracy of 15% within
measured values. The SGP combines multiple metal-oxide sensing elements on one
chip to provide more detailed air quality signals.

This is a gas sensor that can detect a wide range of Volatile Organic Compounds
(VOCs) and H2 and is intended for indoor air quality monitoring. When connected to
your microcontroller (running our library code) it will return a Total Volatile Organic
Compound (TVOC) reading and an equivalent carbon dioxide reading (eCO2) over
I2C.

©Adafruit Industries Page 3 of 29

The SGP30 has a 'standard' hot-plate MOX sensor, as well as a small microcontroller
that controls power to the plate, reads the analog voltage, tracks the baseline
calibration, calcluates TVOC and eCO2 values, and provides an I2C interface to read
from. Unlike the CCS811, this sensor does not require I2C clock stretching.

This part will measure eCO2 (equivalent calculated carbon-dioxide) concentration
within a range of 400 to 60,000 parts per million (ppm), and TVOC (Total Volatile
Organic Compound) concentration within a range of 0 to 60,000 parts per
billion (ppb).

Please note, this sensor, like all VOC/gas sensors, has variability and to get precise
measurements you will want to calibrate it against known sources! That said, for

©Adafruit Industries Page 4 of 29

general environmental sensors, it will give you a good idea of trends and comparison.
The SGP30 does have built in calibration capabilities, note that eCO2 is calculated
based on H2 concentration, it is not a 'true' CO2 sensor for laboratory use.

Another nice element to this sensor is the ability to set humidity compensation for
better accuracy. An external humidity sensor is required and then the RH% is written
over I2C to the sensor, so it can better calculate the TVOC/eCO2 values.

Nice sensor right? So we made it easy for you to get right into your next project. The
surface-mount sensor is soldered onto a custom made PCB in the STEMMA QT form
factor (https://adafru.it/LBQ), making them easy to interface with. The STEMMA QT
connectors (https://adafru.it/JqB) on either side are compatible with the SparkFun
Qwiic (https://adafru.it/Fpw) I2C connectors. This allows you to make solderless
connections between your development board and the SGP30 or to chain it with a
wide range of other sensors and accessories using a compatible cable (https://
adafru.it/JnB).

We’ve of course broken out all the pins to standard headers and added a 1.8V voltage
regulator and level shifting so allow you to use it with either 3.3V or 5V systems such
as the Raspberry Pi, or Metro M4 or Arduino Uno.

There are two versions of this board - the STEMMA QT version shown above, and
the original header-only version shown below. Code works the same on both!

©Adafruit Industries Page 5 of 29

https://www.adafruit.com/?q=stemma%20qt%20sensor
https://www.adafruit.com/?q=stemma%20qt%20sensor
https://www.adafruit.com/?q=stemma%20qt%20sensor
https://learn.adafruit.com/introducing-adafruit-stemma-qt/what-is-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt/what-is-stemma-qt
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://www.adafruit.com/?q=stemma%20qt%20cable
https://www.adafruit.com/?q=stemma%20qt%20cable

Pinouts

©Adafruit Industries Page 6 of 29

Power Pins:
Vin - this is the power pin. Since the sensor chip uses 3 VDC for logic, we have
included a voltage regulator on board that will take 3-5VDC and safely convert it
down. To power the board, give it the same power as the logic level of your
microcontroller - e.g. for a 5V micro like Arduino, use 5V
1V8 - this is the 1.8V output from the voltage regulator, you can grab up to 50mA
from this if you like
GND - common ground for power and logic

Data Pins
SCL - I2C clock pin, connect to your microcontrollers I2C clock line. Can use 3V
or 5V logic, and has a 10K pullup to Vin
SDA - I2C data pin, connect to your microcontrollers I2C data line. Can use 3V
or 5V logic, and has a 10K pullup to Vin
STEMMA QT (https://adafru.it/Ft4) - These connectors allow you to connectors to
dev boards with STEMMA QT connectors or to other things with various
associated accessories (https://adafru.it/Ft6)

Arduino Test
You can easily wire this breakout to any microcontroller; we'll be using an Arduino.

•

•

•

•

•

•

©Adafruit Industries Page 7 of 29

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204

Start by soldering the headers to the SGP30 breakout board. Check out the Adafruit
guide to excellent soldering (https://adafru.it/dxy) if you're new to soldering. Then
continue on below to learn how to wire it to a Metro.

The sensor uses I2C address 0x58 and cannot be changed.

Wiring
Connect the SGP30 breakout to your board using an I2C connection. Here's an
example with an Arduino-compatible Metro:

©Adafruit Industries Page 8 of 29

file:///home/adafruit-guide-excellent-soldering/tools
file:///home/adafruit-guide-excellent-soldering/tools

Board 5V to Sensor Vin (red wire on
STEMMA QT version). (Metro is a 5V logic
chip)
Board ground / GND to sensor ground /
GND (black wire on STEMMA QT version).
Board SCL to sensor SCL (yellow wire on
STEMMA QT version).
Board SDA to sensor SDA (blue wire on
STEMMA QT version).

Metro Original Fritzing File
https://adafru.it/At6

Install Adafruit_SGP30 library
To begin reading sensor data, you will need to install the Adafruit_SGP30 library
(code on our github repository) (https://adafru.it/BnZ). It is available from the Arduino
library manager so we recommend using that.

©Adafruit Industries Page 9 of 29

https://learn.adafruit.com//assets/97491
https://learn.adafruit.com//assets/97491
https://learn.adafruit.com//assets/97492
https://learn.adafruit.com//assets/97492
https://learn.adafruit.com//assets/97493
https://learn.adafruit.com//assets/97493
https://cdn-learn.adafruit.com/assets/assets/000/050/048/original/metro.fzz?1515778618
https://github.com/adafruit/Adafruit_SGP30
https://github.com/adafruit/Adafruit_SGP30

From the IDE open up the library manager...

And type in adafruit sgp30 to locate the library. Click Install

Load Demo
Open up File->Examples->Adafruit_SGP30->sgp30test and upload to your
microcontroller wired up to the sensor

Then open up the serial console at 115200 baud, you'll see the serial number printed
out - this is a unique 48-bit number burned into each chip. Since you may want to do
per-chip calibration, this can help keep your calibration detail separate

©Adafruit Industries Page 10 of 29

The first 10-20 readings will always be TVOC 0 ppb eCO2 400 ppm . That's because
the sensor is warming up, so it will have 'null' readings.

After a few seconds, you will see the TVOC and eCO2 readings fluctuate:

Every minute or so you'll also get a Baseline value printed out. More about that later!

You can take a bit of alcohol on a swap and swipe it nearby to get the readings to
spike

©Adafruit Industries Page 11 of 29

That's it! The sensor pretty much only does that - all the calculations for the TVOC and
eCO2 are done within the sensor itself, no other data is exposed beyond the
'baseline' values

Baseline Set & Get

All VOC/gas sensors use the same underlying technology: a tin oxide element that,
when exposed to organic compounds, changes resistance. The 'problem' with these
sensors is that the baseline changes, often with humidity, temperature, and other non-
gas-related-events. To keep the values coming out reasonable, you'll need to
calibrate the sensor.

If no stored baseline is available after initializing the baseline algorithm,
the sensor has to run for 12 hours until the baseline can be stored. This will
ensure an optimal behavior for the next time it starts up. Reading out the
baseline prior should be avoided unless a valid baseline is restored first.
Once the baseline is properly initialized or restored, the current baseline
value should be stored approximately once per hour. While the sensor is
off, baseline values are valid for a maximum of seven days.

Restarting the sensor without reading back a previously stored baseline
will result in the sensor trying to determine a new baseline. The
adjustement algorithm will be accelerated for 12hrs which is the Maximum
time required to find a new baseline.
The sensor adjusts to the best value it has been exposed to. So keeping it
indoors the sensor thinks this is the best value and sets it to ~0ppb tVOC
and 400ppm CO2eq. As soon as you expose the sensor to outside air it
can adjust to the global H2 Background Signal. For normal Operation
exposing the sensor to outside air for 10min cumulative time should be
sufficient.

©Adafruit Industries Page 12 of 29

If you're experienced with sensors that don't have a baseline, you either
won't be able to measure absolute values or you'll have to implement your
own baseline algorithm.
The sensor to sensor variation of SGP30 in terms of sensitivity is very good
as each of them is calibrated. But the baseline has to be determined for
each sensor individually during the first Operation.

To make that easy, SGP lets you query the 'baseline calibration readings' from the
sensor with code like this:

uint16_t TVOC_base, eCO2_base;
sgp.getIAQBaseline(&eCO2_base, &TVOC_base);

This will grab the two 16-bit sensor calibration words and place them in the variables
so-named.

You should store these in EEPROM, FLASH or hard-coded. Then, next time you start
up the sensor, you can pre-fill the calibration words with
sgp.setIAQBaseline(eCO2_baseline, TVOC_baseline);

Arduino Library Docs
Arduino Library Docs (https://adafru.it/AuL)

Python & CircuitPython Test
It's easy to use the SGP30 sensor with Python or CircuitPython and the Adafruit
CircuitPython SGP30 (https://adafru.it/Bn-) module. This module allows you to easily
write Python code that reads the TVOC, eCO2, and more from the sensor.

You can use this sensor with any CircuitPython microcontroller board or with a
computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-
Python compatibility library (https://adafru.it/BSN).

CircuitPython MicroController Wiring
Connect the SGP30 breakout to your board using an I2C connection, exactly as
shown on the previous page for Arduino. Here's an example with a Feather M0:

©Adafruit Industries Page 13 of 29

https://adafruit.github.io/Adafruit_SGP30/html/class_adafruit___s_g_p30.html
https://github.com/adafruit/Adafruit_CircuitPython_SGP30
https://github.com/adafruit/Adafruit_CircuitPython_SGP30
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Board 3.3V to sensor Vin (red wire on
STEMMA QT version) (Feather is 3.3V
logic)
Board ground / GND to sensor ground /
GND (black wire on STEMMA QT version).
Board SCL to sensor SCL (yellow wire on
STEMMA QT version).
Board SDA to sensor SDA (blue wire on
STEMMA QT version).

Feather Original Fritzing file
https://adafru.it/At8

Python Computer Wiring
Since there's dozens of Linux computers/boards you can use we will show wiring for
Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to
see whether your platform is supported (https://adafru.it/BSN).

©Adafruit Industries Page 14 of 29

https://learn.adafruit.com//assets/97494
https://learn.adafruit.com//assets/97494
https://learn.adafruit.com//assets/97495
https://learn.adafruit.com//assets/97495
https://learn.adafruit.com//assets/97496
https://learn.adafruit.com//assets/97496
https://cdn-learn.adafruit.com/assets/assets/000/050/059/original/feather.fzz?1515783070
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Here's the Raspberry Pi wired with I2C:

Pi 3V3 to sensor VIN (red wire on
STEMMA QT version)
Pi GND to sensor GND (black wire on
STEMMA QT version)
Pi SCL to sensor SCL (yellow wire on
STEMMA QT version)
Pi SDA to sensor SDA (blue wire on
STEMMA QT version)

CircuitPython Installation of SGP30 Library
To use the SGP30 you'll need to install the Adafruit CircuitPython SGP30 (https://
adafru.it/Bn-) library on your CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython (https://
adafru.it/Amd) for your board.

©Adafruit Industries Page 15 of 29

https://learn.adafruit.com//assets/97497
https://learn.adafruit.com//assets/97497
https://learn.adafruit.com//assets/97498
https://learn.adafruit.com//assets/97498
https://learn.adafruit.com//assets/97499
https://learn.adafruit.com//assets/97499
https://github.com/adafruit/Adafruit_CircuitPython_SGP30
file:///home/welcome-to-circuitpython/installing-circuitpython

Next you'll need to install the necessary libraries to use the hardware--carefully follow
the steps to find and install these libraries from Adafruit's CircuitPython library
bundle (https://adafru.it/zdx). Our introduction guide has a great page on how to
install the library bundle (https://adafru.it/ABU) for both express and non-express
boards.

Remember for non-express boards like the, you'll need to manually install the
necessary libraries from the bundle:

adafruit_sgp30.mpy
adafruit_bus_device

You can also download the adafruit_sgp.mpy from its releases page on
Github (https://adafru.it/Bo0).

Before continuing make sure your board's lib folder or root filesystem has
the adafruit_sgp30.mpy, and adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz)so you are at the
CircuitPython >>> prompt.

Python Installation of SGP30 Library
You'll need to install the Adafruit_Blinka library that provides the CircuitPython
support in Python. This may also require enabling I2C on your platform and verifying
you are running Python 3. Since each platform is a little different, and Linux changes
often, please visit the CircuitPython on Linux guide to get your computer
ready (https://adafru.it/BSN)!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-sgp30

If your default Python is version 3 you may need to run 'pip' instead. Just make sure
you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

•
•

•

©Adafruit Industries Page 16 of 29

https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///home/welcome-to-circuitpython/circuitpython-libraries
file:///home/welcome-to-circuitpython/circuitpython-libraries
https://github.com/adafruit/Adafruit_CircuitPython_SGP30/releases
https://github.com/adafruit/Adafruit_CircuitPython_SGP30/releases
file:///home/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

CircuitPython & Python Usage
To demonstrate the usage of the sensor we'll initialize it and read the eCO2 and
TVOC data and print it to the REPL

Save this example sketch as main.py on your CircuitPython board:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

""" Example for using the SGP30 with CircuitPython and the Adafruit library"""

import time
import board
import busio
import adafruit_sgp30

i2c = busio.I2C(board.SCL, board.SDA, frequency=100000)

Create library object on our I2C port
sgp30 = adafruit_sgp30.Adafruit_SGP30(i2c)

print("SGP30 serial #", [hex(i) for i in sgp30.serial])

sgp30.set_iaq_baseline(0x8973, 0x8AAE)
sgp30.set_iaq_relative_humidity(celsius=22.1, relative_humidity=44)

elapsed_sec = 0

while True:
print("eCO2 = %d ppm \t TVOC = %d ppb" % (sgp30.eCO2, sgp30.TVOC))
time.sleep(1)
elapsed_sec += 1
if elapsed_sec > 10:

elapsed_sec = 0
print(

"**** Baseline values: eCO2 = 0x%x, TVOC = 0x%x"
% (sgp30.baseline_eCO2, sgp30.baseline_TVOC)

)

In the REPL you'll see the serial number printed out: [0x0, 0x64, 0xb878] in this
case. This is a unique 48-bit number burned into each chip. Since you may want to do
per-chip calibration, this can help keep your calibration detail separate

©Adafruit Industries Page 17 of 29

The first 10-20 readings will always be eCO2 400 ppm TVOC 0 ppb . That's
because the sensor is warming up, so it will have 'null' readings.

After a few seconds, you will see the TVOC and eCO2 readings fluctuate

Every minute or so you'll also get a Baseline value printed out. More about that later!

You can take a bit of alcohol on a swap and swipe it nearby to get the readings to
spike

That's it! The sensor pretty much only does that - all the calculations for the TVOC and
eCO2 are done within the sensor itself, no other data is exposed beyond the
'baseline' values

Baseline Set & Get

All VOC/gas sensors use the same underlying technology: a tin oxide element that,
when exposed to organic compounds, changes resistance. The 'problem' with these
sensors is that the baseline changes, often with humidity, temperature, and other non-

©Adafruit Industries Page 18 of 29

gas-related-events. To keep the values coming out reasonable, you'll need to
calibrate the sensor.

If no stored baseline is available after initializing the baseline algorithm,
the sensor has to run for 12 hours until the baseline can be stored. This will
ensure an optimal behavior for preceding startups. Reading out the
baseline prior should be avoided unless a valid baseline is restored first.
Once the baseline is properly initialized or restored, the current baseline
value should be stored approximately once per hour. While the sensor is
off, baseline values are valid for a maximum of seven days.

Restarting the sensor without reading back a previously stored baseline
will result in the sensor trying to determine a new baseline. The
adjustement algorithm will be accelerated for 12hrs which is the Maximum
time required to find a new baseline.
The sensor adjusts to the best value it has been exposed to. So keeping it
indoors the sensor thinks this is the best value and sets it to ~0ppb tVOC
and 400ppm CO2eq. As soon as you expose the sensor to outside air it
can adjust to the global H2 Background Signal. For normal Operation
exposing the sensor to outside air for 10min cumulative time should be
sufficient.

If you're experienced with sensors that don't have a baseline, you either
won't be able to measure absolute values or you'll have to implement your
own baseline algorithm.
The sensor to sensor variation of SGP30 in terms of sensitivity is very good
as each of them is calibrated. But the baseline has to be determined for
each sensor individually during the first Operation.

To make that easy, SGP lets you query the 'baseline calibration readings' from the
sensor with code like this:

co2eq_base, tvoc_base = sgp30.baseline_co2eq, sgp30.baseline_tvoc

This will grab the two 16-bit sensor calibration words and place them in the variables
so-named.

You should store these in EEPROM, FLASH or hard-coded. Then, next time you start
up the sensor, you can pre-fill the calibration words
with sgp30.set_iaq_baseline(co2eq_base, tvoc_base)

©Adafruit Industries Page 19 of 29

Python Library Docs
Python Library Docs (https://adafru.it/C3c)

WipperSnapper

What is WipperSnapper

WipperSnapper is a firmware designed to turn any WiFi-capable board into an
Internet-of-Things device without programming a single line of code. WipperSnapper
connects to Adafruit IO (https://adafru.it/fsU), a web platform designed (by
Adafruit! (https://adafru.it/Bo5)) to display, respond, and interact with your project's
data.

Simply load the WipperSnapper firmware onto your board, add credentials, and plug it
into power. Your board will automatically register itself with your Adafruit IO account.

From there, you can add components to your board such as buttons, switches,
potentiometers, sensors, and more! Components are dynamically added to hardware,
so you can immediately start interacting, logging, and streaming the data your
projects produce without writing code.

If you've never used WipperSnapper, click below to read through the quick start guide
before continuing.

©Adafruit Industries Page 20 of 29

https://circuitpython.readthedocs.io/projects/sgp30/en/latest/
https://io.adafruit.com/
https://www.adafruit.com/about
https://www.adafruit.com/about

Quickstart: Adafruit IO
WipperSnapper

https://adafru.it/Vfd

Wiring

First, wire up an SGP-30 to your board exactly as follows. Here is an example of the
SGP-30 wired to an Adafruit ESP32 Feather V2 (http://adafru.it/5400) using I2C with a
STEMMA QT cable (no soldering required) (http://adafru.it/4210)

Board 3V to sensor VIN (red wire on
STEMMA QT)
Board GND to sensor GND (black wire on
STEMMA QT)
Board SCL to sensor SCL (yellow wire on
STEMMA QT)
Board SDA to sensor SDA (blue wire on
STEMMA QT)

Usage

Connect your board to Adafruit IO Wippersnapper and navigate to the
WipperSnapper board list (https://adafru.it/TAu).

On this page, select the WipperSnapper board you're using to be brought to the
board's interface page.

©Adafruit Industries Page 21 of 29

https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper
https://www.adafruit.com/product/5400
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://learn.adafruit.com//assets/128328
https://learn.adafruit.com//assets/128328
https://learn.adafruit.com//assets/128329
https://learn.adafruit.com//assets/128329
https://io.adafruit.com/wippersnapper
https://io.adafruit.com/wippersnapper

If you do not see your board listed here - you need to connect your board to Adafruit
IO (https://adafru.it/Vfd) first.

On the device page, quickly check that
you're running the latest version of the
WipperSnapper firmware.

The device tile on the left indicates the
version number of the firmware running on
the connected board.

If the firmware version is green with a
checkmark - continue with this guide.
If the firmware version is red with an
exclamation mark "!" - update to the latest
WipperSnapper firmware (https://adafru.it/
Vfd) on your board before continuing.

Next, make sure the sensor is plugged into your board and click the I2C Scan button.

©Adafruit Industries Page 22 of 29

https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper
https://learn.adafruit.com//assets/128316
https://learn.adafruit.com//assets/128316
https://learn.adafruit.com//assets/128317
https://learn.adafruit.com//assets/128317
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper

You should see the SGP30's default I2C address of 0x58 pop-up in the I2C scan list.

I don't see the sensor's I2C address listed!
First, double-check the connection and/or wiring between the sensor and the
board.

Then, reset the board and let it re-connect to Adafruit IO WipperSnapper.

With the sensor detected in an I2C scan, you're ready to add the sensor to your
board.

Click the New Component button or the + button to bring up the component picker.

©Adafruit Industries Page 23 of 29

Adafruit IO supports a large amount of components. To quickly find your sensor,
type SGP30 into the search bar, then select the SGP30 component.

On the component configuration page, the SGP30's sensor address should be listed
along with the sensor's settings.

The Send Every option is specific to each sensor's measurements. This option will tell
the Feather how often it should read from the SGP30 sensor and send the data to
Adafruit IO. Measurements can range from every 30 seconds to every 24 hours.

For this example, set the Send Every interval to every 30 seconds.

©Adafruit Industries Page 24 of 29

Your device interface should now show the sensor components you created. After the
interval you configured elapses, WipperSnapper will automatically read values from
the sensor(s) and send them to Adafruit IO.

Note that the SGP30 takes approximately 20minutes to settle after power-up before
reliable readings are given. The first 40 readings will always be eCO2 400 ppm and
TVOC 0 ppb . That's because the sensor is warming up, so it will have 'null' readings.

There is also a one-time initial 48hour burn-in period when fresh from the factory /
powered for the first time. The sensor will not give reliable reading during this period.

©Adafruit Industries Page 25 of 29

After a few seconds, once the sensor has warmed up, you will see the TVOC and
eCO2 readings fluctuate

To view the data that has been logged from the sensor, click on the graph next to the
sensor name.

Here you can see the feed history and edit things about the feed such as the name,
privacy, webhooks associated with the feed and more. If you want to learn more
about how feeds work, check out this page (https://adafru.it/10aZ).

©Adafruit Industries Page 26 of 29

https://learn.adafruit.com/all-the-internet-of-things-episode-four-adafruit-io/advanced-feeds

Download

Files:
SGP30 Datasheet (https://adafru.it/Bo1)
Fritzing object in Adafruit Fritzing library (https://adafru.it/aP3)
EagleCAD files on GitHub (https://adafru.it/LIe)

Schematic STEMMA QT Version

•
•
•

©Adafruit Industries Page 27 of 29

https://cdn-learn.adafruit.com/assets/assets/000/050/058/original/Sensirion_Gas_Sensors_SGP30_Datasheet_EN.pdf
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-SGP30-PCB

Fabrication Print STEMMA QT Version

Schematic & Fabrication Print Original
Version

©Adafruit Industries Page 28 of 29

©Adafruit Industries Page 29 of 29

	Adafruit SGP30 TVOC/eCO2 Gas Sensor
	Table of Contents
	Overview
	Pinouts
	Arduino Test
	Arduino Library Docs
	Python & CircuitPython Test
	Python Library Docs
	WipperSnapper
	Download

	Overview
	Pinouts
	Power Pins:

	Data Pins
	Arduino Test
	Wiring
	Install Adafruit_SGP30 library
	Load Demo
	Baseline Set & Get

	Arduino Library Docs
	Python & CircuitPython Test
	CircuitPython MicroController Wiring
	Python Computer Wiring
	CircuitPython Installation of SGP30 Library
	Python Installation of SGP30 Library
	CircuitPython & Python Usage
	Baseline Set & Get

	Python Library Docs
	WipperSnapper
	What is WipperSnapper
	Wiring
	Usage
	I don't see the sensor's I2C address listed!

	Download
	Files:
	Schematic STEMMA QT Version
	Fabrication Print STEMMA QT Version
	Schematic & Fabrication Print Original Version

