

Adafruit PyPortal Titano
Created by Kattni Rembor

https://learn.adafruit.com/adafruit-pyportal-titano

Last updated on 2021-12-03 12:33:30 PM EST

©Adafruit Industries Page 1 of 124

5

8

9

9

10

11

12

12

13

13

14

14

14

15

15

16

16

17

19

19

20

20

21

21

22

24

25

26

26

27

28

28

29

29

32

33

34

36

37

38

38

39

Table of Contents

Overview

Pinouts

• Microcontroller and Flash

• WiFi

• Display and Display Connector

• Light Sensor

• microSD Card Slot

• Speaker and Speaker Connector

• I2C Connector

• Digital/Analog Connectors

• Status LED and NeoPixel

• USB Connector

• Reset Button

What is CircuitPython?

• CircuitPython is based on Python

• Why would I use CircuitPython?

CircuitPython

• Set up CircuitPython Quick Start!

• PyPortal Titano Default Files

Installing the Mu Editor

• Download and Install Mu

• Starting Up Mu

• Using Mu

Creating and Editing Code

• Creating Code

• Editing Code

• Back to Editing Code...

• Naming Your Program File

Connecting to the Serial Console

• Are you using Mu?

• Serial Console Issues or Delays on Linux

• Setting Permissions on Linux

• Using Something Else?

Interacting with the Serial Console

The REPL

• Entering the REPL

• Interacting with the REPL

• Returning to the Serial Console

CircuitPython Libraries

• The Adafruit CircuitPython Library Bundle

• Downloading the Adafruit CircuitPython Library Bundle

• The CircuitPython Community Library Bundle

©Adafruit Industries Page 2 of 124

39

40

41

41

41

44

45

46

46

46

47

48

49

50

51

51

55

55

56

56

57

58

58

58

59

60

60

61

62

63

63

65

65

66

67

68

68

69

69

69

70

71

71

72

73

73

74

75

76

77

78

• Downloading the CircuitPython Community Library Bundle

• Understanding the Bundle

• Example Files

• Copying Libraries to Your Board

• Understanding Which Libraries to Install

• Example: ImportError Due to Missing Library

• Library Install on Non-Express Boards

• Updating CircuitPython Libraries and Examples

CircuitPython Pins and Modules

• CircuitPython Pins

• import board

• I2C, SPI, and UART

• What Are All the Available Names?

• Microcontroller Pin Names

• CircuitPython Built-In Modules

Frequently Asked Questions

Troubleshooting

• Always Run the Latest Version of CircuitPython and Libraries

• I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

• Bootloader (boardnameBOOT) Drive Not Present

• Windows Explorer Locks Up When Accessing boardnameBOOT Drive

• Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied

• CIRCUITPY Drive Does Not Appear

• Device Errors or Problems on Windows

• Serial Console in Mu Not Displaying Anything

• CircuitPython RGB Status Light

• CircuitPython 7.0.0 and Later

• CircuitPython 6.3.0 and earlier

• Serial console showing ValueError: Incompatible .mpy file

• CIRCUITPY Drive Issues

• Safe Mode

• To erase CIRCUITPY: storage.erase_filesystem()

• Erase CIRCUITPY Without Access to the REPL

• For the specific boards listed below:

• For SAMD21 non-Express boards that have a UF2 bootloader:

• For SAMD21 non-Express boards that do not have a UF2 bootloader:

• Running Out of File Space on SAMD21 Non-Express Boards

• Delete something!

• Use tabs

• On MacOS?

• Prevent & Remove MacOS Hidden Files

• Copy Files on MacOS Without Creating Hidden Files

• Other MacOS Space-Saving Tips

• Device Locked Up or Boot Looping

"Uninstalling" CircuitPython

• Backup Your Code

• Moving Circuit Playground Express to MakeCode

• Moving to Arduino

Welcome to the Community!

• Adafruit Discord

• CircuitPython.org

©Adafruit Industries Page 3 of 124

82

83

84

85

85

86

87

88

92

94

95

95

97

99

102

102

103

104

106

107

108

109

109

109

110

110

110

110

111

111

111

111

112

112

112

112

117

117

117

119

120

122

122

123

• Adafruit GitHub

• Adafruit Forums

• Read the Docs

PyPortal CircuitPython Setup

• Adafruit CircuitPython Bundle

Internet Connect!

• What's a secrets file?

• Connect to WiFi

• Requests

• HTTP GET with Requests

• HTTP POST with Requests

• Advanced Requests Usage

• WiFi Manager

Arduino IDE Setup

Using with Arduino IDE

• Install SAMD Support

• Install Adafruit SAMD

• Install Drivers (Windows 7 & 8 Only)

• Blink

• Successful Upload

• Compilation Issues

• Manually bootloading

• Ubuntu & Linux Issue Fix

Arduino Libraries

• Install Libraries

• Adafruit NeoPixel

• Adafruit SPIFlash

• Adafruit Zero DMA

• Adafruit GFX

• Adafruit ILI9341

• Adafruit HX8357

• Adafruit Touchscreen

• Analog Devices ADT7410

• WiFiNINA

• Adafruit ImageReader

Arduino Test

Updating ESP32 Firmware

Parsing JSON

• Parsing JSON from the Web

• Parsing local JSON files

PyPortal Hardware FAQ

Downloads

• Files

• Schematic and Fab Print

©Adafruit Industries Page 4 of 124

Overview

The PyPortal Titano is the big sister to our popular PyPortal (https://adafru.it/pyportal)

now with twice as many pixels! The PyPortal is our easy-to-use IoT device that allows

you to create all the things for the “Internet of Things” in minutes. Make custom touch

screen interface GUIs, all open-source, and Python-powered using tinyJSON / APIs to

get news, stock, weather, cat photos, and more – all over WiFi with the latest

technologies. Create little pocket universes of joy that connect to something good.

Rotate it 90 degrees, it’s a web-connected conference badge #badgelife.

©Adafruit Industries Page 5 of 124

https://www.adafruit.com/product/4116

The Titano uses an ATMEL (Microchip) ATSAMD51J20, and an Espressif ESP32 Wi-Fi

coprocessor with TLS/SSL support built-in. Titano has a bigger 3.5″ diagonal 320 x

480 color TFT with resistive touch screen. Compare that to the original PyPortal's 3.2"

240x320, we have twice as many pixels! Also, we've updated the connector to be a

reverse-friendly USB C connector.

Compared to the original PyPortal, the Titano does not include a ADT7410

temperature sensor. It also has a higher-resolution screen with a different controller

chip. The processor, STEMMA connectors and WiFi have the exact same wiring as the

original 3.2" PyPortal so if you are running Arduino or CircuitPython code, you'll need

to adjust your graphics and fonts for the larger resolution screen!

©Adafruit Industries Page 6 of 124

The PyPortal Titano includes: a speaker, light sensor, NeoPixel, microSD card slot,

8MB flash, plug-in ports for I2C and 2 analog/digital pins. Open-source hardware, and

Open-Source software, and works with CircuitPython and Arduino. The device shows

up as a USB drive and CircuitPython code can be edited in any IDE, text editor, etc.

The M4 and ESP32 are a great couple - and each bring their own strengths to this

board. The SAMD51 M4 has native USB, so it can show up like a disk drive, act as a

MIDI or HID keyboard/mouse, and of course bootload and debug over a serial port. It

also has DACs, ADC, PWM, and tons of GPIO. Meanwhile, the ESP32 has secure WiFi

capabilities, and plenty of Flash and RAM to buffer sockets. By letting the ESP32

focus on the complex TLS/SSL computation and socket buffering, it frees up the

SAMD51 to act as the user interface. You get a great programming experience thanks

to the native USB with files available for drag-n-drop, and you don't have to spend a

ton of processor time and memory to do SSL encryption/decryption and certificate

management. It's the best of both worlds!

©Adafruit Industries Page 7 of 124

Pinouts

There are so many great features on the Adafruit PyPortal Titano. Let's take a look at

what's available!

©Adafruit Industries Page 8 of 124

Microcontroller and Flash

The main processor chip is the

ATSAMD51J20 Cortex M4 running at

120MHz with 3.3v logic/power. It has 1MB

of Flash and 256KB of RAM.

We also include 8 MB of QSPI Flash for

storing images, sounds, animations,

whatever!

WiFi

The WiFi capability uses an Espressif

ESP32 Wi-Fi coprocessor with TLS/SSL

support built-in.

The ESP32 uses the SPI port for data,

and also uses a CS pin (board.ESP_CS

or Arduino 8), Ready/Busy pin

(board.ESP_BUSY or Arduino 5), and

reset pin (board.ESP_RESET or Arduino

7)

For advanced use or reprogramming, we also connect the main RX/TX UART to

the ESP32 - on Arduino that's Serial1 and in CircuitPython use board.RX and

board.TX .

You can also connect to the ESP32 RTS pin (used in some serial contexts) on bo

ard.ESP_RTS or Arduino 51 .

The ESP32 GPIO0 pin for bootloader enable is connected to board.ESP_GPIO0

or Arduino 6

•

•

•

©Adafruit Industries Page 9 of 124

https://learn.adafruit.com//assets/86164
https://learn.adafruit.com//assets/86164
https://learn.adafruit.com//assets/86165
https://learn.adafruit.com//assets/86165

Display and Display Connector

On the front is a 3.5″ diagonal 320 x 480

color TFT with resistive touch screen!

The display uses the HX8357 chipset -

check out the datasheet (https://adafru.it/

dQQ) for more information.

On the back, there is a large connector

near the middle, the display connector. It

connects the display on the front to the

board.

To give you the most data throughput, we

configure the screen for 8-bit interfacing.

That means 8 data lines and a collection

of 4 or 5 control lines. If you really want

to use the screen in SPI mode, you can

do so by soldering closed the SPI jumper

and cutting/resoldering the 8/SPI jumper

over to the SPI side. That's for advanced

users!

The touchscreen is fully analog/resistive. It can be read using our Arduino/

CircuitPython drivers. The connections are as follows:

YD on board.TOUCH_YD or Arduino A4

XL on board.TOUCH_XL or Arduino A5

YU on board.TOUCH_YU or Arduino A6

XR on board.TOUCH_XR or Arduino A7

The 8 bit LCD interface is not exposed in CircuitPython (its managed internally). In

Arduino it's on Digital 34 thru 41, which is on a PORTA 8-bit boundary (PA16-PA23) and

can be used for DMA or fast port writes. This probably doesn't affect you.

There are multiple control pins

TFT Reset - board.TFT_RESET or Arduino 24

TFT WR - board.TFT_WR or Arduino 26 (this is also the board.TFT_DC pin if

using in SPI mode)

•

•

•

•

•

•

©Adafruit Industries Page 10 of 124

https://learn.adafruit.com//assets/86181
https://learn.adafruit.com//assets/86181
https://learn.adafruit.com//assets/86182
https://learn.adafruit.com//assets/86182
http://www.adafruit.com/datasheets/HX8357-D_DS_April2012.pdf

TFT RD - board.TFT_RD or Arduino 9

TFT RS - board.TFT_RS or Arduino 10

TFT CS - board.TFT_CS or Arduino 11

TFT TE - board.TFT_TE or Arduino 12

There is also a TFT backlight, transistor-connected to board.TFT_BACKLIGHT or

Arduino 25 . You can PWM control it. There are 6 white LEDs connected in parallel, so

having it be full on will draw quite a bit of current (over 100mA!)

Light Sensor

There is an ambient light sensor on the

side, which points through to the front, as

seen in the second image. The light

sensor is an analog input, connected to

board.LIGHT (CircuitPython) or A2

(Arduino) you can read it as any analog

value ranging from 0 (dark) to 1023 (in

Arduino) or 65535 (CircuitPython) when

bright.

•

•

•

•

©Adafruit Industries Page 11 of 124

https://learn.adafruit.com//assets/86185
https://learn.adafruit.com//assets/86185
https://learn.adafruit.com//assets/86186
https://learn.adafruit.com//assets/86186

microSD Card Slot

On the left side, there is a microSD card

slot. A microSD card is the best way to

add extra storage to your project and

provide space for streams to be

processed!

The SD card is on the main SPI port

(shared with the ESP32) and a CS line. In

CircuitPython, the CS pin is

board.SD_CS . In Arduino, it's digital 32 .

There is also a card detect pin on

board.SD_CARD_DETECT (CircuitPython)

or Arduino 33

Speaker and Speaker Connector

There is a speaker and a speaker

connector.

The grey squarish bit on the bottom is a

speaker. There is a small class D

amplifier connected to the speaker, so it

can get quite loud!

There is also a speaker connector, which

is a Molex PicoBlade (https://adafru.it/

C8p). You can attach one of the speakers

available in the Adafruit shop, or solder a

connector to your favorite speaker. If you

do, cut the small solder jumper to the left

of the buzzer so that you only have one

speaker activated (and also it will be

louder!)

The speaker is connected to the DAC0 output from the SAMD51, via a class D

amplifier. The analog output is known as board.AUDIO_OUT in CircuitPython. In

Arduino its A0 .

©Adafruit Industries Page 12 of 124

https://learn.adafruit.com//assets/86187
https://learn.adafruit.com//assets/86187
https://learn.adafruit.com//assets/86188
https://learn.adafruit.com//assets/86188
https://www.digikey.com/product-detail/en/molex-llc/0532610271/WM7620CT-ND/699107

You can disable the speaker amplifier by setting the shutdown pin to output and low.

It's on board.SPEAKER_ENABLE and Arduino 50

I2C Connector

There is a 4-pin JST I2C connector in the

center on the right, that is STEMMA and

Grove compatible. The I2C has level-

shifting & pullups to 3.3V power.

The I2C connector defaults to 5V. There

is a jumper you can cut or solder to

change it between 5V and 3V.

The connector is a JST PH-sized

connector. STEMMA QT breakouts use

JST SH connectors, which are smaller, so

you will need a JST PH to SH connector

(for example, this one (https://adafru.it/

IDk)).

Digital/Analog Connectors

On the right side are two connectors

labeled D3 and D4. These are 3-pin JST

digital or analog connectors for sensors

or NeoPixels. These pins can be analog

inputs or digital I/O.

They have protection 1K resistors + 3.6V

zener diodes so you can drive an LED

directly from the output. Connect to them

via board.D3 and board.D4 or Arduino

3 and 4 . For analog reading in Arduino

use A1 for D3 and A3 for D4 (yeah, sorry

it's not matchy!)

D3/A1 is the second DAC.

Unlike the original PyPortal, the I2C connector is level shifted to 3V so its safe to

use without changing the power trace

©Adafruit Industries Page 13 of 124

https://learn.adafruit.com//assets/86189
https://learn.adafruit.com//assets/86189
https://www.adafruit.com/product/4424
https://learn.adafruit.com//assets/86190
https://learn.adafruit.com//assets/86190

Status LED and NeoPixel

There are two LEDs on the board.

There is the RGB status NeoPixel labeled

"STATUS". It is connected to

board.NEOPIXEL or Arduino 2

As well, there is the D13 LED. This is

attached to board.L and Arduino 13

USB Connector

There is one USB port on the board.

On the left side, towards the bottom, is a

USB Type-C port, which is used for

powering and programming the board.

Reset Button

The reset button is located on the top in

the middle.

Click it once to re-start your firmware.

Click twice to enter bootloader mode.

©Adafruit Industries Page 14 of 124

https://learn.adafruit.com//assets/86191
https://learn.adafruit.com//assets/86191
https://learn.adafruit.com//assets/86193
https://learn.adafruit.com//assets/86193
https://learn.adafruit.com//assets/86195
https://learn.adafruit.com//assets/86195

What is CircuitPython?

CircuitPython is a programming language designed to simplify experimenting and

learning to program on low-cost microcontroller boards. It makes getting started

easier than ever with no upfront desktop downloads needed. Once you get your

board set up, open any text editor, and get started editing code. It's that simple.

CircuitPython is based on Python

Python is the fastest growing programming language. It's taught in schools and

universities. It's a high-level programming language which means it's designed to be

easier to read, write and maintain. It supports modules and packages which means it's

easy to reuse your code for other projects. It has a built in interpreter which means

there are no extra steps, like compiling, to get your code to work. And of course,

Python is Open Source Software which means it's free for anyone to use, modify or

improve upon.

CircuitPython adds hardware support to all of these amazing features. If you already

have Python knowledge, you can easily apply that to using CircuitPython. If you have

no previous experience, it's really simple to get started!

©Adafruit Industries Page 15 of 124

Why would I use CircuitPython?

CircuitPython is designed to run on microcontroller boards. A microcontroller board is

a board with a microcontroller chip that's essentially an itty-bitty all-in-one computer.

The board you're holding is a microcontroller board! CircuitPython is easy to use

because all you need is that little board, a USB cable, and a computer with a USB

connection. But that's only the beginning.

Other reasons to use CircuitPython include:

You want to get up and running quickly. Create a file, edit your code, save the

file, and it runs immediately. There is no compiling, no downloading and no

uploading needed.

You're new to programming. CircuitPython is designed with education in mind.

It's easy to start learning how to program and you get immediate feedback from

the board.

Easily update your code. Since your code lives on the disk drive, you can edit it

whenever you like, you can also keep multiple files around for easy

experimentation.

The serial console and REPL. These allow for live feedback from your code and

interactive programming.

File storage. The internal storage for CircuitPython makes it great for data-

logging, playing audio clips, and otherwise interacting with files.

Strong hardware support. There are many libraries and drivers for sensors,

breakout boards and other external components.

It's Python! Python is the fastest-growing programming language. It's taught in

schools and universities. CircuitPython is almost-completely compatible with

Python. It simply adds hardware support.

This is just the beginning. CircuitPython continues to evolve, and is constantly being

updated. Adafruit welcomes and encourages feedback from the community, and

incorporate it into the development of CircuitPython. That's the core of the open

source concept. This makes CircuitPython better for you and everyone who uses it!

CircuitPython

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)

designed to simplify experimentation and education on low-cost microcontrollers. It

makes it easier than ever to get prototyping by requiring no upfront desktop software

downloads. Simply copy and edit files on the CIRCUITPY "flash" drive to iterate.

•

•

•

•

•

•

•

©Adafruit Industries Page 16 of 124

https://github.com/adafruit/circuitpython
https://micropython.org

The following instructions will show you how to install CircuitPython. If you've already

installed CircuitPython but are looking to update it or reinstall it, the same steps work

for that as well!

က Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

Download the latest version of

CircuitPython for this board via

CircuitPython.org

https://adafru.it/HOC

Click the link above to download the

latest version of CircuitPython for the

PyPortal Titano.

Download and save it to your desktop (or

wherever is handy).

©Adafruit Industries Page 17 of 124

https://circuitpython.org/board/pyportal_titano/
https://learn.adafruit.com//assets/86200
https://learn.adafruit.com//assets/86200

Plug your PyPortal into your computer

using a known-good USB cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Double-click the Reset button on the top

in the middle (magenta arrow) on your

board, and you will see the NeoPixel RGB

LED (green arrow) turn green. If it turns

red, check the USB cable, try another

USB port, etc. Note: The little red LED

next to the USB connector will pulse red.

That's ok!

If double-clicking doesn't work the first

time, try again. Sometimes it can take a

few tries to get the rhythm right!

You will see a new disk drive appear

called PORTALBOOT.

Drag the adafruit-circuitpython-pyportal-

etc.uf2 file to PORTALBOOT.

©Adafruit Industries Page 18 of 124

https://learn.adafruit.com//assets/86199
https://learn.adafruit.com//assets/86199
https://learn.adafruit.com//assets/86202
https://learn.adafruit.com//assets/86202
https://learn.adafruit.com//assets/86204
https://learn.adafruit.com//assets/86204

The LED will flash. Then, the

PORTALBOOT drive will disappear and a

new disk drive called CIRCUITPY will

appear.

If you haven't added any code to your

board, the only file that will be present is

boot_out.txt. This is absolutely normal!

It's time for you to add your code.py and

get started!

That's it, you're done! :)

PyPortal Titano Default Files

Click below to download a zip of the files that shipped on the PyPortal Titano.

PyPortal Titano Default Files

https://adafru.it/UGc

Installing the Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's

written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial

console is built right in so you get immediate feedback from your board's serial

output!

Mu is our recommended editor - please use it (unless you are an experienced

coder with a favorite editor already!).

©Adafruit Industries Page 19 of 124

https://learn.adafruit.com//assets/86206
https://learn.adafruit.com//assets/86206
https://github.com/adafruit/circuitpython-default-files/tree/main/boards/pyportal_titano/5.x

Download and Install Mu

Download Mu from https://

codewith.mu (https://adafru.it/Be6).

Click the Download link for downloads

and installation instructions.

Click Start Here to find a wealth of other

information, including extensive tutorials

and and how-to's.

Starting Up Mu

The first time you start Mu, you will be

prompted to select your 'mode' - you can

always change your mind later. For now

please select CircuitPython!

The current mode is displayed in the

lower right corner of the window, next to

the "gear" icon. If the mode says

"Microbit" or something else, click the

Mode button in the upper left, and then

choose "CircuitPython" in the dialog box

that appears.

Mu attempts to auto-detect your board

on startup, so if you do not have a

CircuitPython board plugged in with a

CIRCUITPY drive available, Mu will inform

you where it will store any code you save

until you plug in a board.

To avoid this warning, plug in a board

and ensure that the CIRCUITPY drive is

mounted before starting Mu.

Windows users: due to the nature of MSI installers, please remove old versions of

Mu before installing the latest version.

©Adafruit Industries Page 20 of 124

https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://codewith.mu/
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679

Using Mu

You can now explore Mu! The three main sections of the window are labeled below;

the button bar, the text editor, and the serial console / REPL.

Now you're ready to code! Let's keep going...

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and

running. This section covers how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. Adafruit

strongly recommends using Mu! It's designed for CircuitPython, and it's really simple

and easy to use, with a built in serial console!

If you don't or can't use Mu, there are a number of other editors that work quite well.

The Recommended Editors page (https://adafru.it/Vue) has more details. Otherwise,

make sure you do "Eject" or "Safe Remove" on Windows or "sync" on Linux after

writing a file if you aren't using Mu. (This is not a problem on MacOS.)

©Adafruit Industries Page 21 of 124

https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

Creating Code

Installing CircuitPython generates a

code.py file on your CIRCUITPY drive. To

begin your own program, open your

editor, and load the code.py file from the

CIRCUITPY drive.

If you are using Mu, click the Load button

in the button bar, navigate to the

CIRCUITPY drive, and choose code.py.

Copy and paste the following code into your editor:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

If you're using a KB2040, QT Py or a Trinkey, please download the NeoPixel blink

example (https://adafru.it/UDU).

The KB2040, QT Py and the Trinkeys do not have a built-in little red LED! There is

an addressable RGB NeoPixel LED. The above example will NOT work on the

KB2040, QT Py or the Trinkeys!

The NeoPixel blink example uses the onboard NeoPixel, but the time code is the

same. You can use the linked NeoPixel Blink example to follow along with this

guide page.

©Adafruit Industries Page 22 of 124

https://learn.adafruit.com//assets/105703
https://learn.adafruit.com//assets/105703
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py

It will look like this. Note that under the

while True: line, the next four lines

begin with four spaces to indent them,

and they're indented exactly the same

amount. All the lines before that have no

spaces before the text.

Save the code.py file on your CIRCUITPY

drive.

The little LED should now be blinking. Once per half-second.

Congratulations, you've just run your first CircuitPython program!

On most boards you'll find a tiny red LED.

On the ItsyBitsy nRF52840, you'll find a tiny blue LED.

On QT Py M0, QT Py RP2040, and the Trinkey series, you will find only an RGB

NeoPixel LED.

©Adafruit Industries Page 23 of 124

https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105705

Editing Code

To edit code, open the code.py file on

your CIRCUITPY drive into your editor.

Make the desired changes to your code.

Save the file. That's it!

Your code changes are run as soon as the file is done saving.

There's one warning before you continue...

The CircuitPython code on your board detects when the files are changed or written

and will automatically re-start your code. This makes coding very fast because you

save, and it re-runs. If you unplug or reset the board before your computer finishes

writing the file to your board, you can corrupt the drive. If this happens, you may lose

the code you've written, so it's important to backup your code to your computer

regularly.

There are a couple of ways to avoid filesystem corruption.

1. Use an editor that writes out the file completely when you save it.

Check out the Recommended Editors page (https://adafru.it/Vue) for details on

different editing options.

Don't click reset or unplug your board!

If you are dragging a file from your host computer onto the CIRCUITPY drive, you

still need to do step 2. Eject or Sync (below) to make sure the file is completely

written.

©Adafruit Industries Page 24 of 124

https://learn.adafruit.com//assets/105706
https://learn.adafruit.com//assets/105706
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make

it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually

eject, but it will force the operating system to save your file to disk. On Linux, use the

sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file

manager to drag a file onto CIRCUITPY.

Oh No I Did Something Wrong and Now The CIRCUITPY
Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this

happens, follow the steps found on the Troubleshooting (https://adafru.it/Den) page

of every board guide to get your board up and running again.

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file

into your editor. You'll make a simple change. Change the first 0.5 to 0.1 . The code

should look like this:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.1)

 led.value = False

 time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your

board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it

looks like this:

©Adafruit Industries Page 25 of 124

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

while True:

 led.value = True

 time.sleep(0.1)

 led.value = False

 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on

and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly

because you've increased the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them

to see what happens! These were simple changes, but major changes are done using

the same process. Make your desired change, save it, and get the results. That's

really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.t

xt, code.py, main.txt and main.py. CircuitPython looks for those files, in that order, and

then runs the first one it finds. While code.py is the recommended name for your code

file, it is important to know that the other options exist. If your program doesn't seem

to be updating as you work, make sure you haven't created another code file that's

being read instead of the one you're working on.

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called

a "print statement". This is a line you include in your code that causes your code to

output text. A print statement in CircuitPython (and Python) looks like this:

print("Hello, world!")

This line in your code.py would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial

console comes in!

©Adafruit Industries Page 26 of 124

The serial console receives output from your CircuitPython board sent over USB and

displays it so you can see it. This is necessary when you've included a print statement

in your code and you'd like to see what you printed. It is also helpful for

troubleshooting errors, because your board will send errors and the serial console will

display those too.

The serial console requires an editor that has a built in terminal, or a separate

terminal program. A terminal is a program that gives you a text-based interface to

perform various tasks.

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board

making using the serial console really really easy.

First, make sure your CircuitPython board

is plugged in.

If you open Mu without a board plugged

in, you may encounter the error seen

here, letting you know no CircuitPython

board was found and indicating where

your code will be stored until you plug in

a board.

If you are using Windows 7, make sure

you installed the drivers (https://adafru.it/

VuB).

Once you've opened Mu with your board plugged in, look for the Serial button in the

button bar and click it.

The Mu window will split in two, horizontally, and display the serial console at the

bottom.

©Adafruit Industries Page 27 of 124

https://learn.adafruit.com//assets/105925
https://learn.adafruit.com//assets/105925
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers

Serial Console Issues or Delays on Linux

If you're on Linux, and are seeing multi-second delays connecting to the serial

console, or are seeing "AT" and other gibberish when you connect, then the modemma

nager service might be interfering. Just remove it; it doesn't have much use unless

you're still using dial-up modems.

To remove modemmanager , type the following command at a shell:

sudo apt purge modemmanager

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the S

erial button, you need to add yourself to a user group to have permission to connect

to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group.

On other Linux distributions, the group you need may be different. See the Advanced

If nothing appears in the serial console, it may mean your code is done running

or has no print statements in it. Click into the serial console part of Mu, and press

CTRL+D to reload.

©Adafruit Industries Page 28 of 124

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

Serial Console on Linux (https://adafru.it/VAO) for details on how to add yourself to

the right group.

Using Something Else?

If you're not using Mu to edit, are using or if for some reason you are not a fan of its

built in serial console, you can run the serial console from a separate program.

Windows requires you to download a terminal program. Check out the Advanced

Serial Console on Windows page for more details. (https://adafru.it/AAH)

MacOS has Terminal built in, though there are other options available for download. C

heck the Advanced Serial Console on Mac page for more details. (https://adafru.it/

AAI)

Linux has a terminal program built in, though other options are available for

download. Check the Advanced Serial Console on Linux page for more details. (https:

//adafru.it/VAO)

Once connected, you'll see something like the following.

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, you're going to

edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print

anything you like! Just include your phrase between the quotation marks inside the

parentheses. For example:

import board

import digitalio

import time

©Adafruit Industries Page 29 of 124

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello, CircuitPython!")

 led.value = True

 time.sleep(1)

 led.value = False

 time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed

text to something else.

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello back to you!")

 led.value = True

 time.sleep(1)

 led.value = False

 time.sleep(1)

Keep your serial console window where you can see it. Save your file. You'll see what

the serial console displays when the board reboots. Then you'll see your new change!

©Adafruit Industries Page 30 of 124

The Traceback (most recent call last): is telling you the last thing your board

was doing before you saved your file. This is normal behavior and will happen every

time the board resets. This is really handy for troubleshooting. Let's introduce an error

so you can see how it is used.

Delete the e at the end of True from the line led.value = True so that it says le

d.value = Tru

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello back to you!")

 led.value = Tru

 time.sleep(1)

 led.value = False

 time.sleep(1)

Save your file. You will notice that your red LED will stop blinking, and you may have a

colored status LED blinking at you. This is because the code is no longer correct and

can no longer run properly. You need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose.

You may have 200 lines of code, and have no idea where your error could be hiding.

This is where the serial console can help. Let's take a look!

The Traceback (most recent call last): is telling you that the last thing it was

able to run was line 10 in your code. The next line is your error: NameError: name

'Tru' is not defined . This error might not mean a lot to you, but combined with

knowing the issue is on line 10, it gives you a great place to start!

©Adafruit Industries Page 31 of 124

Go back to your code, and take a look at line 10. Obviously, you know what the

problem is already. But if you didn't, you'd want to look at line 10 and see if you could

figure it out. If you're still unsure, try googling the error to get some help. In this case,

you know what to look for. You spelled True wrong. Fix the typo and save your file.

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking

again.

The serial console will display any output generated by your code. Some sensors,

such as a humidity sensor or a thermistor, receive data and you can use print

statements to display that information. You can also use print statements for

troubleshooting, which is called "print debugging". Essentially, if your code isn't

working, and you want to know where it's failing, you can put print statements in

various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and

programming!

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL.

The REPL allows you to enter individual lines of code and have them run immediately.

It's really handy if you're running into trouble with a particular program and can't

figure out why. It's interactive so it's great for testing new ideas.

©Adafruit Industries Page 32 of 124

Entering the REPL

To use the REPL, you first need to be connected to the serial console. Once that

connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll

see Press any key to enter the REPL. Use CTRL-D to reload. Follow those

instructions, and press any key on your keyboard.

The Traceback (most recent call last): is telling you the last thing your board

was doing before you pressed Ctrl + C and interrupted it. The KeyboardInterrupt

is you pressing CTRL+C. This information can be handy when troubleshooting, but for

now, don't worry about it. Just note that it is expected behavior.

If your code.py file is empty or does not contain a loop, it will show an empty output

and Code done running. . There is no information about what your board was

doing before you interrupted it because there is no code running.

If you have no code.py on your CIRCUITPY drive, you will enter the REPL immediately

after pressing CTRL+C. Again, there is no information about what your board was

doing before you interrupted it because there is no code running.

©Adafruit Industries Page 33 of 124

Regardless, once you press a key you'll see a >>> prompt welcoming you to the

REPL!

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released.

Next, it gives you the type of board you're using and the type of microcontroller the

board uses. Each part of this may be different for your board depending on the

versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL

From this prompt you can run all sorts of commands and code. The first thing you'll do

is run help() . This will tell you where to start exploring the REPL. To run code in the

REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

©Adafruit Industries Page 34 of 124

First part of the message is another reference to the version of CircuitPython you're

using. Second, a URL for the CircuitPython related project guides. Then... wait. What's

this? To list built-in modules type `help("modules")`. Remember the

modules you learned about while going through creating code? That's exactly what

this is talking about! This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

This is a list of all the core modules built into CircuitPython, including board .

Remember, board contains all of the pins on the board that you can use in your

code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might

look like nothing happened, but that's not the case! If you recall, the import

statement simply tells the code to expect to do something with that module. In this

case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

This is a list of all of the pins on your board that are available for you to use in your

code. Each board's list will differ slightly depending on the number of pins available.

Do you see LED ? That's the pin you used to blink the red LED!

©Adafruit Industries Page 35 of 124

The REPL can also be used to run code. Be aware that any code you enter into the

REPL isn't saved anywhere. If you're testing something new that you'd like to keep,

make sure you have it saved somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that

says, "Hello, World." You're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire

programs into the REPL to test them. Remember that nothing typed into the REPL is

saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to

see if a few new lines of code will work. It's fantastic for troubleshooting code by

entering it one line at a time and finding out where it fails. It lets you see what

modules are available and explore those modules.

Try typing more into the REPL to see what happens!

Returning to the Serial Console

When you're ready to leave the REPL and return to the serial console, simply press CT

RL+D. This will reload your board and reenter the serial console. You will restart the

program you had running before entering the REPL. In the console window, you'll see

any output from the program you had running. And if your program was affecting

anything visual on the board, you'll see that start up again as well.

Everything typed into the REPL is ephemeral. Once you reload the REPL or return

to the serial console, nothing you typed will be retained in any memory space. So

be sure to save any desired code you wrote somewhere else, or you'll lose it

when you leave the current REPL instance!

©Adafruit Industries Page 36 of 124

You can return to the REPL at any time!

CircuitPython Libraries

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. These files are called libraries. Some of them

are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder

called lib. Part of what makes CircuitPython so great is its ability to store code

separately from the firmware itself. Storing code separately from the firmware makes

it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If

not, simply create the folder yourself. When you first install CircuitPython, an empty lib

directory will be created for you.

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 37 of 124

https://circuitpython.org/downloads
https://circuitpython.org/libraries

CircuitPython libraries work in the same way as regular Python modules so the Python

docs (https://adafru.it/rar) are an excellent reference for how it all should work. In

Python terms, you can place our library files in the lib directory because it's part of the

Python path by default.

One downside of this approach of separate libraries is that they are not built in. To

use them, one needs to copy them to the CIRCUITPY drive before they can be used.

Fortunately, there is a library bundle.

The bundle and the library releases on GitHub also feature optimized versions of the

libraries with the .mpy file extension. These files take less space on the drive and

have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with

the entire bundle. Therefore, you will need to load the libraries you need when you

begin working with your board. You can find example code in the guides for your

board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get

libraries on board.

The Adafruit CircuitPython Library Bundle

Adafruit provides CircuitPython libraries for much of the hardware they provide,

including sensors, breakouts and more. To eliminate the need for searching for each

library individually, the libraries are available together in the Adafruit CircuitPython

Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release by clicking

the button below. The libraries are being constantly updated and improved, so you'll

always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For

example, you would download the 6.x library bundle if you're running any version of

CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython

7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible

mpy errors due to changes in library interfaces possible during major version

changes.

©Adafruit Industries Page 38 of 124

https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

Click to visit circuitpython.org for the

latest Adafruit CircuitPython Library

Bundle

https://adafru.it/ENC

Download the bundle version that matches your CircuitPython firmware version. If you

don't know the version, check the version info in boot_out.txt file on the CIRCUITPY

drive, or the initial prompt in the CircuitPython REPL. For example, if you're running

v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably

don't want that unless you are doing advanced work on libraries.

The CircuitPython Community Library Bundle

The CircuitPython Community Library Bundle is made up of libraries written and

provided by members of the CircuitPython community. These libraries are often

written when community members encountered hardware not supported in the

Adafruit Bundle, or to support a personal project. The authors all chose to submit

these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit. As

you would with any library, if you run into problems, feel free to file an issue on the

GitHub repo for the library. Bear in mind, though, that most of these libraries are

supported by a single person and you should be patient about receiving a response.

Remember, these folks are not paid by Adafruit, and are volunteering their personal

time when possible to provide support.

Downloading the CircuitPython Community Library Bundle

You can download the latest CircuitPython Community Library Bundle release by

clicking the button below. The libraries are being constantly updated and improved,

so you'll always want to download the latest bundle.

Click for the latest CircuitPython

Community Library Bundle release

https://adafru.it/VCn

The link takes you to the latest release of the CircuitPython Community Library

Bundle on GitHub. There are multiple versions of the bundle available. Download the

©Adafruit Industries Page 39 of 124

https://circuitpython.org/libraries
https://github.com/adafruit/CircuitPython_Community_Bundle/releases

bundle version that matches your CircuitPython firmware version. If you don't know

the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the

initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,

download the 7.x library bundle.

Understanding the Bundle

After downloading the zip, extract its contents. This is usually done by double clicking

on the zip. On Mac OSX, it places the file in the same directory as the zip.

Open the bundle folder. Inside you'll find two information files, and two folders. One

folder is the lib bundle, and the other folder is the examples bundle.

Now open the lib folder. When you open the folder, you'll see a large number of .mpy

files, and folders.

©Adafruit Industries Page 40 of 124

Example Files

All example files from each library are now included in the bundles in an examples

directory (as seen above), as well as an examples-only bundle. These are included for

two main reasons:

Allow for quick testing of devices.

Provide an example base of code, that is easily built upon for individualized

purposes.

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you

extracted from the downloaded zip. Inside you'll find a number of folders and .mpy

files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire

folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the

downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename

it to code.py to run it.

Understanding Which Libraries to Install

You now know how to load libraries on to your CircuitPython-compatible

microcontroller board. You may now be wondering, how do you know which libraries

you need to install? Unfortunately, it's not always straightforward. Fortunately, there is

•

•

If a library has multiple .mpy files contained in a folder, be sure to copy the entire

folder to CIRCUITPY/lib.

©Adafruit Industries Page 41 of 124

an obvious place to start, and a relatively simple way to figure out the rest. First up:

the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or

more import statements. These typically look like the following:

import library_or_module

However, import statements can also sometimes look like the following:

from library_or_module import name

from library_or_module.subpackage import name

from library_or_module import name as local_name

They can also have more complicated formats, such as including a try / except

block, etc.

The important thing to know is that an import statement will always include the

name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or

other code shown here, as the purpose of this section involves only the import list.

import time

import board

import neopixel

import adafruit_lis3dh

import usb_hid

from adafruit_hid.consumer_control import ConsumerControl

from adafruit_hid.consumer_control_code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always

built-in CircuitPython modules. How do you know the difference? Time to visit the

REPL.

•

•

•

•

©Adafruit Industries Page 42 of 124

In the Interacting with the REPL section (https://adafru.it/Awz) on The REPL page (http

s://adafru.it/Awz) in this guide, the help("modules") command is discussed. This

command provides a list of all of the built-in modules available in CircuitPython for

your board. So, if you connect to the serial console on your board, and enter the

REPL, you can run help("modules") to see what modules are available for your

board. Then, as you read through the import statements, you can, for the purposes

of figuring out which libraries to load, ignore the statement that import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.

Your list may look similar or be anything down to a significant subset of this list for

smaller boards.

Now that you know what you're looking for, it's time to read through the import

statements. The first two, time and board , are on the modules list above, so they're

built-in.

The next one, neopixel , is not on the module list. That means it's your first library!

So, you would head over to the bundle zip you downloaded, and search for neopixel.

There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your CI

RCUITPY drive. The following one, adafruit_lis3dh , is also not on the module list.

Follow the same process for adafruit_lis3dh, where you'll find adafruit_lis3dh.mpy,

and copy that over.

The fifth one is usb_hid , and it is in the modules list, so it is built in. Often all of the

built-in modules come first in the import list, but sometimes they don't! Don't assume

that everything after the first library is also a library, and verify each import with the

modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are

formatted like this, the first thing after the from is the library name. In this case, the

library name is adafruit_hid . A search of the bundle will find an adafruit_hid folder.

©Adafruit Industries Page 43 of 124

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

When a library is a folder, you must copy the entire folder and its contents as it is in

the bundle to the lib folder on your CIRCUITPY drive. In this case, you would copy the

entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit_hid . Sometimes you will

need to import more than one thing from the same library. Regardless of how many

times you import the same library, you only need to load the library by copying over

the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on

your CircuitPython-compatible board!

There are cases, however, where libraries require other libraries internally. The

internally required library is called a dependency. In the event of library

dependencies, the easiest way to figure out what other libraries are required is to

connect to the serial console and follow along with the ImportError printed there.

The following is a very simple example of an ImportError , but the concept is the

same for any missing library.

Example: ImportError Due to Missing Library

If you choose to load libraries as you need them, or you're starting fresh with an

existing example, you may end up with code that tries to use a library you haven't yet

loaded. This section will demonstrate what happens when you try to utilise a library

that you don't have loaded on your board, and cover the steps required to resolve the

issue.

This demonstration will only return an error if you do not have the required library

loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board

import time

import simpleio

led = simpleio.DigitalOut(board.LED)

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

©Adafruit Industries Page 44 of 124

Save this file. Nothing happens to your board. Let's check the serial console to see

what's going on.

You have an ImportError . It says there is no module named 'simpleio' . That's

the one you just included in your code!

Click the link above to download the correct bundle. Extract the lib folder from the

downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file you're

looking for! Follow the steps above to load an individual library file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose

the library that matches the one you're missing.

Library Install on Non-Express Boards

If you have an M0 non-Express board such as Trinket M0, Gemma M0, QT Py M0, or

one of the M0 Trinkeys, you'll want to follow the same steps in the example above to

install libraries as you need them. Remember, you don't need to wait for an ImportE

rror if you know what library you added to your code. Open the library bundle you

downloaded, find the library you need, and drag it to the lib folder on your CIRCUITPY

drive.

You can still end up running out of space on your M0 non-Express board even if you

only load libraries as you need them. There are a number of steps you can use to try

©Adafruit Industries Page 45 of 124

to resolve this issue. You'll find suggestions on the Troubleshooting page (https://

adafru.it/Den).

Updating CircuitPython Libraries and Examples

Libraries and examples are updated from time to time, and it's important to update the

files you have on your CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag

the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates

include things like bug fixes and new features. It's important to check in every so

often to see if the libraries you're using have been updated.

CircuitPython Pins and Modules

CircuitPython is designed to run on microcontrollers and allows you to interface with

all kinds of sensors, inputs and other hardware peripherals. There are tons of guides

showing how to wire up a circuit, and use CircuitPython to, for example, read data

from a sensor, or detect a button press. Most CircuitPython code includes hardware

setup which requires various modules, such as board or digitalio . You import

these modules and then use them in your code. How does CircuitPython know to look

for hardware in the specific place you connected it, and where do these modules

come from?

This page explains both. You'll learn how CircuitPython finds the pins on your

microcontroller board, including how to find the available pins for your board and

what each pin is named. You'll also learn about the modules built into CircuitPython,

including how to find all the modules available for your board.

CircuitPython Pins

When using hardware peripherals with a CircuitPython compatible microcontroller,

you'll almost certainly be utilising pins. This section will cover how to access your

board's pins using CircuitPython, how to discover what pins and board-specific

objects are available in CircuitPython for your board, how to use the board-specific

objects, and how to determine all available pin names for a given pin on your board.

©Adafruit Industries Page 46 of 124

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

import board

When you're using any kind of hardware peripherals wired up to your microcontroller

board, the import list in your code will include import board . The board module is

built into CircuitPython, and is used to provide access to a series of board-specific

objects, including pins. Take a look at your microcontroller board. You'll notice that

next to the pins are pin labels. You can always access a pin by its pin label. However,

there are almost always multiple names for a given pin.

To see all the available board-specific objects and pins for your board, enter the REPL

(>>>) and run the following commands:

import board

dir(board)

Here is the output for the QT Py.

The following pins have labels on the physical QT Py board: A0, A1, A2, A3, SDA, SCL,

TX, RX, SCK, MISO, and MOSI. You see that there are many more entries available in

board than the labels on the QT Py.

You can use the pin names on the physical board, regardless of whether they seem to

be specific to a certain protocol.

For example, you do not have to use the SDA pin for I2C - you can use it for a button

or LED.

On the flip side, there may be multiple names for one pin. For example, on the QT Py,

pin A0 is labeled on the physical board silkscreen, but it is available in CircuitPython

as both A0 and D0 . For more information on finding all the names for a given pin,

see the What Are All the Available Pin Names? (https://adafru.it/QkA) section below.

The results of dir(board) for CircuitPython compatible boards will look similar to

the results for the QT Py in terms of the pin names, e.g. A0, D0, etc. However, some

boards, for example, the Metro ESP32-S2, have different styled pin names. Here is the

output for the Metro ESP32-S2.

©Adafruit Industries Page 47 of 124

https://learn.adafruit.com/circuitpython-essentials/circuitpython-pins-and-modules#what-are-all-the-available-names-3082670-14

Note that most of the pins are named in an IO# style, such as IO1 and IO2. Those pins

on the physical board are labeled only with a number, so an easy way to know how to

access them in CircuitPython, is to run those commands in the REPL and find the pin

naming scheme.

I2C, SPI, and UART

You'll also see there are often (but not always!) three special board-specific objects

included: I2C , SPI , and UART - each one is for the default pin-set used for each of

the three common protocol busses they are named for. These are called singletons.

What's a singleton? When you create an object in CircuitPython, you are instantiating

('creating') it. Instantiating an object means you are creating an instance of the object

with the unique values that are provided, or "passed", to it.

For example, When you instantiate an I2C object using the busio module, it expects

two pins: clock and data, typically SCL and SDA. It often looks like this:

i2c = busio.I2C(board.SCL, board.SDA)

Then, you pass the I2C object to a driver for the hardware you're using. For example,

if you were using the TSL2591 light sensor and its CircuitPython library, the next line

of code would be:

tsl2591 = adafruit_tsl2591.TSL2591(i2c)

However, CircuitPython makes this simpler by including the I2C singleton in the boa

rd module. Instead of the two lines of code above, you simply provide the singleton

as the I2C object. So if you were using the TSL2591 and its CircuitPython library, the

two above lines of code would be replaced with:

tsl2591 = adafruit_tsl2591.TSL2591(board.I2C())

If your code is failing to run because it can't find a pin name you provided, verify

that you have the proper pin name by running these commands in the REPL.

©Adafruit Industries Page 48 of 124

This eliminates the need for the busio module, and simplifies the code. Behind the

scenes, the board.I2C() object is instantiated when you call it, but not before, and

on subsequent calls, it returns the same object. Basically, it does not create an object

until you need it, and provides the same object every time you need it. You can call

board.I2C() as many times as you like, and it will always return the same object.

What Are All the Available Names?

Many pins on CircuitPython compatible microcontroller boards have multiple names,

however, typically, there's only one name labeled on the physical board. So how do

you find out what the other available pin names are? Simple, with the following script!

Each line printed out to the serial console contains the set of names for a particular

pin.

On a microcontroller board running CircuitPython, connect to the serial console. Then,

save the following as code.py on your CIRCUITPY drive.

"""CircuitPython Essentials Pin Map Script"""

import microcontroller

import board

board_pins = []

for pin in dir(microcontroller.pin):

 if isinstance(getattr(microcontroller.pin, pin), microcontroller.Pin):

 pins = []

 for alias in dir(board):

 if getattr(board, alias) is getattr(microcontroller.pin, pin):

 pins.append("board.{}".format(alias))

 if len(pins) > 0:

 board_pins.append(" ".join(pins))

for pins in sorted(board_pins):

 print(pins)

Here is the result when this script is run on QT Py:

The UART/SPI/I2C singletons will use the 'default' bus pins for each board - often

labeled as RX/TX (UART), MOSI/MISO/SCK (SPI), or SDA/SCL (I2C). Check your

board documentation/pinout for the default busses.

©Adafruit Industries Page 49 of 124

Each line represents a single pin. Find the line containing the pin name that's labeled

on the physical board, and you'll find the other names available for that pin. For

example, the first pin on the board is labeled A0. The first line in the output is board

.A0 board.D0 . This means that you can access pin A0 with both board.A0 and bo

ard.D0 .

You'll notice there are two "pins" that aren't labeled on the board but appear in the

list: board.NEOPIXEL and board.NEOPIXEL_POWER . Many boards have several of

these special pins that give you access to built-in board hardware, such as an LED or

an on-board sensor. The Qt Py only has one on-board extra piece of hardware, a

NeoPixel LED, so there's only the one available in the list. But you can also control

whether or not power is applied to the NeoPixel, so there's a separate pin for that.

That's all there is to figuring out the available names for a pin on a compatible

microcontroller board in CircuitPython!

Microcontroller Pin Names

The pin names available to you in the CircuitPython board module are not the same

as the names of the pins on the microcontroller itself. The board pin names are

aliases to the microcontroller pin names. If you look at the datasheet for your

microcontroller, you'll likely find a pinout with a series of pin names, such as "PA18" or

"GPIO5". If you want to get to the actual microcontroller pin name in CircuitPython,

you'll need the microcontroller.pin module. As with board , you can run dir(m

icrocontroller.pin) in the REPL to receive a list of the microcontroller pin names.

©Adafruit Industries Page 50 of 124

CircuitPython Built-In Modules

There is a set of modules used in most CircuitPython programs. One or more of these

modules is always used in projects involving hardware. Often hardware requires

installing a separate library from the Adafruit CircuitPython Bundle. But, if you try to

find board or digitalio in the same bundle, you'll come up lacking. So, where do

these modules come from? They're built into CircuitPython! You can find an

comprehensive list of built-in CircuitPython modules and the technical details of their

functionality from CircuitPython here (https://adafru.it/QkB) and the Python-like

modules included here (https://adafru.it/QkC). However, not every module is available

for every board due to size constraints or hardware limitations. How do you find out

what modules are available for your board?

There are two options for this. You can check the support matrix (https://adafru.it/

N2a), and search for your board by name. Or, you can use the REPL.

Plug in your board, connect to the serial console and enter the REPL. Type the

following command.

help("modules")

That's it! You now know two ways to find all of the modules built into CircuitPython for

your compatible microcontroller board.

Frequently Asked Questions

These are some of the common questions regarding CircuitPython and CircuitPython

microcontrollers.

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

©Adafruit Industries Page 51 of 124

https://circuitpython.readthedocs.io/en/latest/shared-bindings/index.html#modules
https://circuitpython.readthedocs.io/en/latest/docs/library/index.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html#
https://circuitpython.org/downloads

I have to continue using CircuitPython 5.x or earlier.
Where can I find compatible libraries?

We are no longer building or supporting the CircuitPython 5.x or earlier library

bundles. We highly encourage you to update CircuitPython to the latest

version (https://adafru.it/Em8) and use the current version of the libraries (https://

adafru.it/ENC). However, if for some reason you cannot update, here are the last

available library bundles for older versions:

2.x bundle (https://adafru.it/FJA)

3.x bundle (https://adafru.it/FJB)

4.x bundle (https://adafru.it/QDL)

5.x bundle (https://adafru.it/QDJ)

Is ESP8266 or ESP32 supported in CircuitPython? Why
not?

We dropped ESP8266 support as of 4.x - For more information please read about it

here!

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-

esp8266 (https://adafru.it/CiG)

We do not support ESP32 because it does not have native USB.

We do support ESP32-S2, which has native USB.

How do I connect to the Internet with CircuitPython?

If you'd like to include WiFi in your project, check out this guide (https://adafru.it/

F5X) on using AirLift with CircuitPython. For further project examples, and guides

about using AirLift with specific hardware, check out the Adafruit Learn

System (https://adafru.it/VBr).

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

•

•

•

•

©Adafruit Industries Page 52 of 124

https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/adafruit-io-basics-airlift
https://learn.adafruit.com/search?q=airlift
https://learn.adafruit.com/search?q=airlift

Is there asyncio support in CircuitPython?

We do not have asyncio support in CircuitPython at this time. However, async and

await are turned on in many builds, and we are looking at how to use event loops

and other constructs effectively and easily.

My RGB NeoPixel/DotStar LED is blinking funny colors -
what does it mean?

The status LED can tell you what's going on with your CircuitPython board. Read

more here for what the colors mean! (https://adafru.it/Den)

What is a MemoryError?

Memory allocation errors happen when you're trying to store too much on the

board. The CircuitPython microcontroller boards have a limited amount of memory

available. You can have about 250 lines of code on the M0 Express boards. If you

try to import too many libraries, a combination of large libraries, or run a program

with too many lines of code, your code will fail to run and you will receive a

MemoryError in the serial console.

MemoryError?"> What do I do when I encounter a
MemoryError?

Try resetting your board. Each time you reset the board, it reallocates the memory.

While this is unlikely to resolve your issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries

are available in the bundle in a .mpy format which takes up less memory than .py

format. Be sure that you're using the latest library bundle (https://adafru.it/uap) for

your version of CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments,

remove extraneous or unneeded code, or any other clean up you can do to

shorten your code. If you're using a lot of functions, you could try moving those

into a separate library, creating a .mpy of that library, and importing it into your

code.

You can turn your entire file into a .mpy and import that into code.py. This means

you will be unable to edit your code live on the board, but it can save you space.

©Adafruit Industries Page 53 of 124

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

Can the order of my import statements affect memory?

It can because the memory gets fragmented differently depending on allocation

order and the size of objects. Loading .mpy files uses less memory so its

recommended to do that for files you aren't editing.

How can I create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross .

You can download mpy-cross for your operating system from here (https://

adafru.it/QDK). Builds are available for Windows, macOS, x64 Linux, and Raspberry

Pi Linux. Choose the latest mpy-cross whose version matches the version of

CircuitPython you are using.

To make a .mpy file, run ./mpy-cross path/to/yourfile.py to create a

yourfile.mpy in the same directory as the original file.

How do I check how much memory I have free?

Run the following to see the number of bytes available for use:

import gc

gc.mem_free()

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts. We do not have an

estimated time for when they will be included

Does Feather M0 support WINC1500?

No, WINC1500 will not fit into the M0 flash space.

Can AVRs such as ATmega328 or ATmega2560 run
CircuitPython?

No.

Commonly Used Acronyms

CP or CPy = CircuitPython (https://adafru.it/KJD)

CPC = Circuit Playground Classic (https://adafru.it/ncE)

©Adafruit Industries Page 54 of 124

https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/
https://circuitpython.org
https://www.adafruit.com/product/3000

CPX = Circuit Playground Express (https://adafru.it/wpF)

CPB = Circuit Playground Bluefruit (https://adafru.it/Gpe)

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are

a few things you may encounter and how to resolve them.

Always Run the Latest Version of
CircuitPython and Libraries

As CircuitPython development continues and there are new releases, Adafruit will

stop supporting older releases. You need to update to the latest CircuitPython. (https:

//adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your version of

CircuitPython. Please update CircuitPython and then download the latest bundle (http

s://adafru.it/ENC).

As new versions of CircuitPython are released, Adafruit will stop providing the

previous bundles as automatically created downloads on the Adafruit CircuitPython

Library Bundle repo. If you must continue to use an earlier version, you can still

download the appropriate version of mpy-cross from the particular release of

CircuitPython on the CircuitPython repo and create your own compatible .mpy library

files. However, it is best to update to the latest for both CircuitPython and the library

bundle.

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 55 of 124

https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries

I have to continue using CircuitPython 5.x or earlier.
Where can I find compatible libraries?

Adafruit is no longer building or supporting the CircuitPython 5.x or earlier library

bundles. You are highly encourged to update CircuitPython to the latest version (http

s://adafru.it/Em8) and use the current version of the libraries (https://adafru.it/ENC).

However, if for some reason you cannot update, links to the previous bundles are

available in the FAQ (https://adafru.it/FwY).

Bootloader (boardnameBOOT) Drive Not
Present

You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship with the UF2

bootloader (https://adafru.it/zbX)installed. The Feather M0 Basic, Feather M0

Adalogger, and similar boards use a regular Arduino-compatible bootloader, which

does not show a boardnameBOOT drive.

MakeCode

If you are running a MakeCode (https://adafru.it/zbY) program on Circuit Playground

Express, press the reset button just once to get the CPLAYBOOT drive to show up.

Pressing it twice will not work.

MacOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the

BOOT drive. See this forum post (https://adafru.it/sTc) for how to fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade

to Windows 10 with the driver package installed? You don't need to install this

package on Windows 10 for most Adafruit boards. The old version (v1.5) can interfere

with recognizing your device. Go to Settings -> Apps and uninstall all the "Adafruit"

driver programs.

©Adafruit Industries Page 56 of 124

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions#faq-3105289
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/makecode/sharing-and-saving?view=all#step-1-bootloader-mode
https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215

Windows 7 or 8.1

To use a CircuitPython-compatible board with Windows 7 or 8.1, you must install a

driver. Installation instructions are available here (https://adafru.it/VuB).

It is recommended (https://adafru.it/Amd) that you upgrade to Windows 10 if possible;

an upgrade is probably still free for you. Check here (https://adafru.it/Amd).

You should now be done! Test by unplugging and replugging the board. You should

see the CIRCUITPY drive, and when you double-click the reset button (single click on

Circuit Playground Express running MakeCode), you should see the appropriate boar

dnameBOOT drive.

Let us know in the Adafruit support forums (https://adafru.it/jIf) or on the Adafruit

Discord () if this does not work for you!

Windows Explorer Locks Up When
Accessing boardnameBOOT Drive

On Windows, several third-party programs that can cause issues. The symptom is that

you try to access the boardnameBOOT drive, and Windows or Windows Explorer

seems to lock up. These programs are known to cause trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64.

They acquired hardware to test, and released a beta version that fixes the

problem. This may have been incorporated into the latest release. Please let us

know in the forums if you test this.

Hard Disk Sentinel

Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely.

Disabling some aspects of Kaspersky does not always solve the problem. This

problem has been reported to Kaspersky.

ESET NOD32 anti-virus: There have been problems with at least version

9.0.386.0, solved by uninstallation.

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0) .

Windows 7 drivers for CircuitPython boards released since then, including

RP2040 boards, are not yet available. The boards work fine on Windows 10. A

new release of the drivers is in process.

•

•

•

•

©Adafruit Industries Page 57 of 124

https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://forums.adafruit.com
https://adafru.it/discord
https://adafru.it/discord

Copying UF2 to boardnameBOOT Drive
Hangs at 0% Copied

On Windows, a Western DIgital (WD) utility that comes with their external USB drives

can interfere with copying UF2 files to the boardnameBOOT drive. Uninstall that utility

to fix the problem.

CIRCUITPY Drive Does Not Appear

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. There has not

yet been settings change discovered that prevents this. Complete uninstallation of

Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this problem on

Windows 7. The user turned off both Smart Firewall and Auto Protect, and CIRCUITPY

then appeared.

Device Errors or Problems on Windows

Windows can become confused about USB device installations. This is particularly

true of Windows 7 and 8.1. It is recommended (https://adafru.it/Amd) that you upgrade

to Windows 10 if possible; an upgrade is probably still free for you: see this link (https

://adafru.it/V2a).

If not, try cleaning up your USB devices. Use Uwe Sieber's Device Cleanup Tool (http

s://adafru.it/RWd). Download and unzip the tool. Unplug all the boards and other USB

devices you want to clean up. Run the tool as Administrator. You will see a listing like

this, probably with many more devices. It is listing all the USB devices that are not

currently attached.

©Adafruit Industries Page 58 of 124

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://www.cnet.com/tech/services-and-software/windows-10-download/
https://www.uwe-sieber.de/misc_tools_e.html

Select all the devices you want to remove, and then press Delete. It is usually safe

just to select everything. Any device that is removed will get a fresh install when you

plug it in. Using the Device Cleanup Tool also discards all the COM port assignments

for the unplugged boards. If you have used many Arduino and CircuitPython boards,

you have probably seen higher and higher COM port numbers used, seemingly

without end. This will fix that problem.

Serial Console in Mu Not Displaying
Anything

There are times when the serial console will accurately not display anything, such as,

when no code is currently running, or when code with no serial output is already

running before you open the console. However, if you find yourself in a situation

where you feel it should be displaying something like an error, consider the following.

Depending on the size of your screen or Mu window, when you open the serial

console, the serial console panel may be very small. This can be a problem. A basic

CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.

code.py output:

Traceback (most recent call last):

 File "code.py", line 7

SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

©Adafruit Industries Page 59 of 124

Therefore, if your serial console panel is five lines tall or less, you may only see blank

lines or blank lines followed by Press any key to enter the REPL. Use CTRL-D

to reload. . If this is the case, you need to either mouse over the top of the panel to

utilise the option to resize the serial panel, or use the scrollbar on the right side to

scroll up and find your message.

This applies to any kind of serial output whether it be error messages or print

statements. So before you start trying to debug your problem on the hardware side,

be sure to check that you haven't simply missed the serial messages due to serial

output panel height.

CircuitPython RGB Status Light

Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED

on the board that indicates the status of CircuitPython. A few boards designed before

CircuitPython existed, such as the Feather M0 Basic, do not.

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB LEDs,

but do NOT have a status LED. The LEDs are all green when in the bootloader. In

versions before 7.0.0, they do NOT indicate any status while running CircuitPython.

CircuitPython 7.0.0 and Later

The status LED blinks were changed in CircuitPython 7.0.0 in order to save battery

power and simplify the blinks. These blink patterns will occur on single color LEDs

when the board does not have any RGB LEDs. Speed and blink count also vary for

this reason.

On start up, the LED will blink YELLOW multiple times for 1 second. Pressing reset

during this time will restart the board and then enter safe mode. On Bluetooth

capable boards, after the yellow blinks, there will be a set of faster blue blinks.

Pressing reset during the BLUE blinks will clear Bluetooth information and start the

device in discoverable mode, so it can be used with a BLE code editor.

©Adafruit Industries Page 60 of 124

Once started, CircuitPython will blink a pattern every 5 seconds when no user code is

running to indicate why the code stopped:

1 GREEN blink: Code finished without error.

2 RED blinks: Code ended due to an exception. Check the serial console for

details.

3 YELLOW blinks: CircuitPython is in safe mode. No user code was run. Check

the serial console for safe mode reason.

When in the REPL, CircuitPython will set the status LED to WHITE. You can change the

LED color from the REPL. The status indicator will not persist on non-NeoPixel or

DotStar LEDs.

CircuitPython 6.3.0 and earlier

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt, main.py, or main.txt) is running

pulsing GREEN: code.py (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for

a reset to indicate that it should start in safe mode

pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted

steady WHITE: REPL is running

steady BLUE: boot.py is running

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 61 of 124

Colors with multiple flashes following indicate a Python exception and then indicate

the line number of the error. The color of the first flash indicates the type of error:

GREEN: IndentationError

CYAN: SyntaxError

WHITE: NameError

ORANGE: OSError

PURPLE: ValueError

YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHIT

E flashes are thousands' place, BLUE are hundreds' place, YELLOW are tens' place,

and CYAN are one's place. So for example, an error on line 32 would flash YELLOW

three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

Serial console showing ValueError:
Incompatible .mpy file

This error occurs when importing a module that is stored as a .mpy binary file that

was generated by a different version of CircuitPython than the one its being loaded

into. In particular, the mpy binary format changed between CircuitPython versions 6.x

and 7.x, 2.x and 3.x, and 1.x and 2.x.

•

•

•

•

•

•

©Adafruit Industries Page 62 of 124

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to download

a newer version of the library that triggered the error on import . All libraries are

available in the Adafruit bundle (https://adafru.it/y8E).

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find

that your CIRCUITPY stops showing up in your file explorer, or shows up as NO_NAM

E. These are indicators that your filesystem has issues. When the CIRCUITPY disk is

not safely ejected before being reset by the button or being disconnected from USB,

it may corrupt the flash drive. It can happen on Windows, Mac or Linux, though it is

more common on Windows.

Be aware, if you have used Arduino to program your board, CircuitPython is no longer

able to provide the USB services. You will need to reload CircuitPython to resolve this

situation.

The easiest first step is to reload CircuitPython. Double-tap reset on the board so you

get a boardnameBOOT drive rather than a CIRCUITPY drive, and copy the latest

version of CircuitPython (.uf2) back to the board. This may restore CIRCUITPY

functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try putting

the board into safe mode.

Safe Mode

Whether you've run into a situation where you can no longer edit your code.py on

your CIRCUITPY drive, your board has gotten into a state where CIRCUITPY is read-

only, or you have turned off the CIRCUITPY drive altogether, safe mode can help.

Safe mode in CircuitPython does not run any user code on startup, and disables auto-

reload. This means a few things. First, safe mode bypasses any code in boot.py

(where you can set CIRCUITPY read-only or turn it off completely). Second, it does not

run the code in code.py. And finally, it does not automatically soft-reload when data is

written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,

safe mode gives you the opportunity to correct it without losing all of the data on the

CIRCUITPY drive.

©Adafruit Industries Page 63 of 124

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

Entering Safe Mode in CircuitPython 7.x

To enter safe mode when using CircuitPython 7.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

1000ms. On some boards, the onboard status LED will blink yellow during that time. If

you press reset during that 1000ms, the board will start up in safe mode. It can be

difficult to react to the yellow LED, so you may want to think of it simply as a "slow"

double click of the reset button. (Remember, a fast double click of reset enters the

bootloader.)

Entering Safe Mode in CircuitPython 6.x

To enter safe mode when using CircuitPython 6.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

700ms. On some boards, the onboard status LED (highlighted in green above) will

turn solid yellow during this time. If you press reset during that 700ms, the board will

start up in safe mode. It can be difficult to react to the yellow LED, so you may want to

think of it simply as a slow double click of the reset button. (Remember, a fast double

click of reset enters the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse

yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently

blink yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.

Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.

Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not

run until you press the reset button, or unplug and plug in your board, to get out of

safe mode.

©Adafruit Industries Page 64 of 124

At this point, you'll want to remove any user code in code.py and, if present, the boot.

py file from CIRCUITPY. Once removed, tap the reset button, or unplug and plug in

your board, to restart CircuitPython. This will restart the board and may resolve your

drive issues. If resolved, you can begin coding again as usual.

If safe mode does not resolve your issue, the board must be completely erased and

CircuitPython must be reloaded onto the board.

To erase CIRCUITPY: storage.erase_filesystem()

CircuitPython includes a built-in function to erase and reformat the filesystem. If you

have a version of CircuitPython older than 2.3.0 on your board, you can update to the

newest version (https://adafru.it/Amd) to do this.

Connect to the CircuitPython REPL (https://adafru.it/Bec) using Mu or a terminal

program.

Type the following into the REPL:

>>> import storage

>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Erase CIRCUITPY Without Access to the REPL

If you can't access the REPL, or you're running a version of CircuitPython previous to

2.3.0 and you don't want to upgrade, there are options available for some specific

boards.

The options listed below are considered to be the "old way" of erasing your board.

The method shown above using the REPL is highly recommended as the best method

for erasing your board.

You WILL lose everything on the board when you complete the following steps. If

possible, make a copy of your code before continuing.

1.

2.

If at all possible, it is recommended to use the REPL to erase your CIRCUITPY

drive. The REPL method is explained above.

©Adafruit Industries Page 65 of 124

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

For the specific boards listed below:

If the board you are trying to erase is listed below, follow the steps to use the file to

erase your board.

 1. Download the correct erase file:

Circuit Playground Express

https://adafru.it/AdI

Feather M0 Express

https://adafru.it/AdJ

Feather M4 Express

https://adafru.it/EVK

Metro M0 Express

https://adafru.it/AdK

Metro M4 Express QSPI Eraser

https://adafru.it/EoM

Trellis M4 Express (QSPI)

https://adafru.it/DjD

Grand Central M4 Express (QSPI)

https://adafru.it/DBA

PyPortal M4 Express (QSPI)

https://adafru.it/Eca

Circuit Playground Bluefruit (QSPI)

https://adafru.it/Gnc

Monster M4SK (QSPI)

https://adafru.it/GAN

©Adafruit Industries Page 66 of 124

https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433

PyBadge/PyGamer QSPI Eraser.UF2

https://adafru.it/GAO

CLUE_Flash_Erase.UF2

https://adafru.it/Jat

Matrix_Portal_M4_(QSPI).UF2

https://adafru.it/Q5B

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The status LED will turn yellow or blue, indicating the erase has started.

 5. After approximately 15 seconds, the status LED will light up green. On the

NeoTrellis M4 this is the first NeoPixel on the grid

 6. Double-click the reset button on the board to bring up the boardnameBOOT d

rive.

 7. Drag the appropriate latest release of CircuitPython (https://adafru.it/Em8) .uf2

file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps

starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (https://adafru.it/Amd). You'll also need to load your

code and reinstall your libraries!

For SAMD21 non-Express boards that have a UF2
bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that have a UF2

bootloader include Trinket M0, GEMMA M0, QT Py M0, and the SAMD21-based

Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps to erase

your board.

©Adafruit Industries Page 67 of 124

https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613
https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%28QSPI%29.UF2?1611076081
https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython

 1. Download the erase file:

SAMD21 non-Express Boards

https://adafru.it/VB-

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The boot LED will start flashing again, and the boardnameBOOT drive will

reappear.

 5. Drag the appropriate latest release CircuitPython (https://adafru.it/Em8) .uf2

file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (https://adafru.it/Amd) YYou'll also need to load your

code and reinstall your libraries!

For SAMD21 non-Express boards that do not have a UF2
bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that do not have a

UF2 bootloader include the Feather M0 Basic Proto, Feather Adalogger, or the

Arduino Zero.

If you are trying to erase a non-Express board that does not have a UF2 bootloader, f

ollow these directions to reload CircuitPython using bossac (https://adafru.it/Bed),

which will erase and re-create CIRCUITPY.

Running Out of File Space on SAMD21 Non-
Express Boards

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. This includes boards like the Trinket M0,

GEMMA M0, QT Py M0, and the SAMD21-based Trinkey boards.

©Adafruit Industries Page 68 of 124

https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2
https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its

likely you'll run out of space but don't panic! There are a number of ways to free up

space.

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there

are libraries in the lib folder that you aren't using anymore or test code that isn't in

use. Don't delete the lib folder completely, though, just remove what you don't need.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you

don't need it or have already installed it. It's ~12KiB or so.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the

recommendation is to indent code with four spaces for every indent. In general, that

is recommended too. However, one trick to storing more human-readable code is to

use a single tab character for indentation. This approach uses 1/4 of the space for

indentation and can be significant when you're counting bytes.

On MacOS?

MacOS loves to generate hidden files. Luckily you can disable some of the extra

hidden files that macOS adds by running a few commands to disable search indexing

and create zero byte placeholders. Follow the steps below to maximize the amount of

space available on macOS.

©Adafruit Industries Page 69 of 124

Prevent & Remove MacOS Hidden Files

First find the volume name for your board. With the board plugged in run this

command in a terminal to list all the volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full

path to the volume is the /Volumes/CIRCUITPY path.

Now follow the steps from this question (https://adafru.it/u1c) to run these terminal

commands that stop hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY

cd /Volumes/CIRCUITPY

rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}

mkdir .fseventsd

touch .fseventsd/no_log .metadata_never_index .Trashes

cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your

board's volume if it's different. At this point all the hidden files should be cleared from

the board and some hidden files will be prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders

mentioned above will be created automatically if you erase and reformat the

filesystem. WARNING: Save your files first! Do this in the REPL:

>>> import storage

>>> storage.erase_filesystem()

However there are still some cases where hidden files will be created by MacOS. In

particular if you copy a file that was downloaded from the internet it will have special

metadata that MacOS stores as a hidden file. Luckily you can run a copy command

from the terminal to copy files without this hidden metadata file. See the steps below.

©Adafruit Industries Page 70 of 124

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on macOS

you need to be careful to copy files to the board with a special command that

prevents future hidden files from being created. Unfortunately you cannot use drag

and drop copy in Finder because it will still create these hidden extended attribute

files in some cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For

example to copy a file_name.mpy file to the board use a command like:

cp -X file_name.mpy /Volumes/CIRCUITPY

(Replace file_name.mpy with the name of the file you want to copy.)

Or to copy a folder and all of the files and folders contained within, use a command

like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before

copying.

if lib does not exist, you'll create a file named lib !

cp -X file_name.mpy /Volumes/CIRCUITPY/lib

This is safer, and will complain if a lib folder does not exist.

cp -X file_name.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden

files here's how to do so. First, move into the Volumes/ directory with cd /Volumes/ ,

and then list the amount of space used on the CIRCUITPY drive with the df

command.

©Adafruit Industries Page 71 of 124

That's not very much space left! The next step is to show a list of the files currently on

the CIRCUITPY drive, including the hidden files, using the ls command. You cannot

use Finder to do this, you must do it via command line!

There are a few of the hidden files that MacOS loves to generate, all of which begin

with a ._ before the file name. Remove the ._ files using the rm command. You can

remove them all once by running rm CIRCUITPY/._* . The * acts as a wildcard to

apply the command to everything that begins with ._ at the same time.

Finally, you can run df again to see the current space used.

Nice! You have 12Ki more than before! This space can now be used for libraries and

code!

Device Locked Up or Boot Looping

In rare cases, it may happen that something in your code.py or boot.py files causes

the device to get locked up, or even go into a boot loop. A boot loop occurs when the

board reboots repeatedly and never fully loads. These are not caused by your

everyday Python exceptions, typically it's the result of a deeper problem within

CircuitPython. In this situation, it can be difficult to recover your device if CIRCUITPY

is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery

option. When the device boots up in safe mode it will not run the code.py or boot.py

scripts, but will still connect the CIRCUITPY drive so that you can remove or modify

those files as needed.

The method used to manually enter safe mode can be different for different devices.

It is also very similar to the method used for getting into bootloader mode, which is a

©Adafruit Industries Page 72 of 124

different thing. So it can take a few tries to get the timing right. If you end up in

bootloader mode, no problem, you can try again without needing to do anything else.

For most devices:

Press the reset button, and then when the RGB status LED blinks yellow, press the

reset button again. Since your reaction time may not be that fast, try a "slow" double

click, to catch the yellow LED on the second click.

For ESP32-S2 based devices:

Press and release the reset button, then press and release the boot button about 3/4

of a second later.

Refer to the diagrams above for boot sequence details.

"Uninstalling" CircuitPython

A lot of our boards can be used with multiple programming languages. For example,

the Circuit Playground Express can be used with MakeCode, Code.org CS

Discoveries, CircuitPython and Arduino.

Maybe you tried CircuitPython and want to go back to MakeCode or Arduino? Not a

problem. You can always remove or reinstall CircuitPython whenever you want! Heck,

you can change your mind every day!

There is nothing to uninstall. CircuitPython is "just another program" that is loaded

onto your board. You simply load another program (Arduino or MakeCode) and it will

overwrite CircuitPython.

Backup Your Code

Before replacing CircuitPython, don't forget to make a backup of the code you have

on the CIRCUITPY drive. That means your code.py any other files, the lib folder etc.

You may lose these files when you remove CircuitPython, so backups are key! Just

drag the files to a folder on your laptop or desktop computer like you would with any

USB drive.

©Adafruit Industries Page 73 of 124

Moving Circuit Playground Express to
MakeCode

On the Circuit Playground Express (this currently does NOT apply to Circuit

Playground Bluefruit), if you want to go back to using MakeCode, it's really easy. Visit

makecode.adafruit.com (https://adafru.it/wpC) and find the program you want to

upload. Click Download to download the .uf2 file that is generated by MakeCode.

Now double-click your CircuitPython board until you see the onboard LED(s) turn

green and the ...BOOT directory shows up.

Then find the downloaded MakeCode .uf2 file and drag it to the CPLAYBOOT drive.

©Adafruit Industries Page 74 of 124

https://makecode.adafruit.com

Your MakeCode is now running and CircuitPython has been removed. Going forward

you only have to single click the reset button to get to CPLAYBOOT. This is an

idiosyncrasy of MakeCode.

Moving to Arduino

If you want to use Arduino instead, you just use the Arduino IDE to load an Arduino

program. Here's an example of uploading a simple "Blink" Arduino program, but you

don't have to use this particular program.

Start by plugging in your board, and double-clicking reset until you get the green

onboard LED(s).

Within Arduino IDE, select the matching board, say Circuit Playground Express.

Select the correct matching Port:

Create a new simple Blink sketch example:

// the setup function runs once when you press reset or power the board

void setup() {

 // initialize digital pin 13 as an output.

 pinMode(13, OUTPUT);

©Adafruit Industries Page 75 of 124

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

Make sure the LED(s) are still green, then click Upload to upload Blink. Once it has

uploaded successfully, the serial Port will change so re-select the new Port!

Once Blink is uploaded you should no longer need to double-click to enter

bootloader mode. Arduino will automatically reset when you upload.

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and

great for learning. It runs on microcontrollers and works out of the box. You can plug it

in and get started with any text editor. The best part? CircuitPython comes with an

amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for

anyone to use, edit, copy and improve upon. This also means CircuitPython becomes

better because of you being a part of it. Whether this is your first microcontroller

board or you're a seasoned software engineer, you have something important to offer

the Adafruit CircuitPython community. This page highlights some of the many ways

you can be a part of it!

©Adafruit Industries Page 76 of 124

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community

comes together to volunteer and provide live support of all kinds. From general

discussion to detailed problem solving, and everything in between, Discord is a digital

maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your

needs. Each channel is shown on Discord as "#channelname". There's the #help-with-

projects channel for assistance with your current project or help coming up with ideas

for your next one. There's the #show-and-tell channel for showing off your newest

creation. Don't be afraid to ask a question in any channel! If you're unsure, #general is

a great place to start. If another channel is more likely to provide you with a better

answer, someone will guide you.

The help with CircuitPython channel is where to go with your CircuitPython questions.

#help-with-circuitpython is there for new users and developers alike so feel free to

ask a question or post a comment! Everyone of any experience level is welcome to

join in on the conversation. Your contributions are important! The #circuitpython-dev

channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord.

Supporting others doesn't always mean answering questions. Join in celebrating

successes! Celebrate your mistakes! Sometimes just hearing that someone else has

gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your

granddaughter to.

©Adafruit Industries Page 77 of 124

Visit https://adafru.it/discord ()to sign up for Discord. Everyone is looking forward to

meeting you!

CircuitPython.org

Beyond the Adafruit Learn System, which you are viewing right now, the best place to

find information about CircuitPython is circuitpython.org (https://adafru.it/KJD).

Everything you need to get started with your new microcontroller and beyond is

available. You can do things like download CircuitPython for your microcontroller (htt

ps://adafru.it/Em8) or download the latest CircuitPython Library bundle (https://

adafru.it/ENC), or check out which single board computers support Blinka (https://

adafru.it/EA8). You can also get to various other CircuitPython related things like

Awesome CircuitPython or the Python for Microcontrollers newsletter. This is all

incredibly useful, but it isn't necessarily community related. So why is it included

here? The Contributing page (https://adafru.it/VD7).

CircuitPython itself is written in C. However, all of the Adafruit CircuitPython libraries

are written in Python. If you're interested in contributing to CircuitPython on the

Python side of things, check out circuitpython.org/contributing (https://adafru.it/VD7).

You'll find information pertaining to every Adafruit CircuitPython library GitHub

repository, giving you the opportunity to join the community by finding a contributing

option that works for you.

©Adafruit Industries Page 78 of 124

https://adafru.it/discord
https://circuitpython.org
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/blinka
https://circuitpython.org/contributing
https://circuitpython.org/contributing

Note the date on the page next to Current Status for:

If you submit any contributions to the libraries, and do not see them reflected on the

Contributing page, it could be that the job that checks for new updates hasn't yet run

for today. Simply check back tomorrow!

Now, a look at the different options.

Pull Requests

The first tab you'll find is a list of open pull requests.

GitHub pull requests, or PRs, are opened when folks have added something to an

Adafruit CircuitPython library GitHub repo, and are asking for Adafruit to add, or

merge, their changes into the main library code. For PRs to be merged, they must first

be reviewed. Reviewing is a great way to contribute! Take a look at the list of open

pull requests, and pick one that interests you. If you have the hardware, you can test

code changes. If you don't, you can still check the code updates for syntax. In the

case of documentation updates, you can verify the information, or check it for spelling

and grammar. Once you've checked out the update, you can leave a comment letting

us know that you took a look. Once you've done that for a while, and you're more

comfortable with it, you can consider joining the CircuitPythonLibrarians review team.

The more reviewers we have, the more authors we can support. Reviewing is a crucial

part of an open source ecosystem, CircuitPython included.

Open Issues

The second tab you'll find is a list of open issues.

©Adafruit Industries Page 79 of 124

GitHub issues are filed for a number of reasons, including when there is a bug in the

library or example code, or when someone wants to make a feature request. Issues

are a great way to find an opportunity to contribute directly to the libraries by

updating code or documentation. If you're interested in contributing code or

documentation, take a look at the open issues and find one that interests you.

If you're not sure where to start, you can search the issues by label. Labels are

applied to issues to make the goal easier to identify at a first glance, or to indicate the

difficulty level of the issue. Click on the dropdown next to "Sort by issue labels" to see

the list of available labels, and click on one to choose it.

If you're new to everything, new to contributing to open source, or new to

contributing to the CircuitPython project, you can choose "Good first issue". Issues

with that label are well defined, with a finite scope, and are intended to be easy for

someone new to figure out.

If you're looking for something a little more complicated, consider "Bug" or

"Enhancement". The Bug label is applied to issues that pertain to problems or failures

found in the library. The Enhancement label is applied to feature requests.

©Adafruit Industries Page 80 of 124

Don't let the process intimidate you. If you're new to Git and GitHub, there is a guide (

https://adafru.it/Dkh) to walk you through the entire process. As well, there are always

folks available on Discord () to answer questions.

Library Infrastructure Issues

The third tab you'll find is a list of library infrastructure issues.

This section is generated by a script that runs checks on the libraries, and then

reports back where there may be issues. It is made up of a list of subsections each

containing links to the repositories that are experiencing that particular issue. This

page is available mostly for internal use, but you may find some opportunities to

contribute on this page. If there's an issue listed that sounds like something you could

help with, mention it on Discord, or file an issue on GitHub indicating you're working

to resolve that issue. Others can reply either way to let you know what the scope of it

might be, and help you resolve it if necessary.

CircuitPython Localization

The fourth tab you'll find is the CircuitPython Localization tab.

If you speak another language, you can help translate CircuitPython! The translations

apply to informational and error messages that are within the CircuitPython core. It

means that folks who do not speak English have the opportunity to have these

messages shown to them in their own language when using CircuitPython. This is

©Adafruit Industries Page 81 of 124

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https:adafru.it/discord

incredibly important to provide the best experience possible for all users.

CircuitPython uses Weblate to translate, which makes it much simpler to contribute

translations. You will still need to know some CircuitPython-specific practices and a

few basics about coding strings, but as with any CircuitPython contributions, folks are

there to help.

Regardless of your skill level, or how you want to contribute to the CircuitPython

project, there is an opportunity available. The Contributing page (https://adafru.it/VD7)

is an excellent place to start!

Adafruit GitHub

Whether you're just beginning or are life-long programmer who would like to

contribute, there are ways for everyone to be a part of the CircuitPython project. The

CircuitPython core is written in C. The libraries are written in Python. GitHub is the

best source of ways to contribute to the CircuitPython core (https://adafru.it/tB7), and

the CircuitPython libraries (https://adafru.it/VFv). If you need an account, visit https://

github.com/ (https://adafru.it/d6C) and sign up.

If you're new to GitHub or programming in general, there are great opportunities for

you. For the CircuitPython core, head over to the CircuitPython repository on GitHub,

click on "Issues (https://adafru.it/tBb)", and you'll find a list that includes issues labeled

"good first issue (https://adafru.it/Bef)". For the libraries, head over to the Contributing

page Issues list (https://adafru.it/VFv), and use the drop down menu to search for "go

od first issue (https://adafru.it/VFw)". These issues are things that have been identified

as something that someone with any level of experience can help with. These issues

include options like updating documentation, providing feedback, and fixing simple

bugs. If you need help getting started with GitHub, there is an excellent guide on Con

tributing to CircuitPython with Git and GitHub (https://adafru.it/Dkh).

©Adafruit Industries Page 82 of 124

https://circuitpython.org/contributing
https://github.com/adafruit/circuitpython
https://circuitpython.org/contributing/open-issues
https://github.com/
https://github.com/
https://github.com/adafruit/circuitpython/issues
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github

Already experienced and looking for a challenge? Checkout the rest of either issues

list and you'll find plenty of ways to contribute. You'll find all sorts of things, from new

driver requests, to library bugs, to core module updates. There's plenty of

opportunities for everyone at any level!

When working with or using CircuitPython or the CircuitPython libraries, you may find

problems. If you find a bug, that's great! The team loves bugs! Posting a detailed issue

to GitHub is an invaluable way to contribute to improving CircuitPython. For

CircuitPython itself, file an issue here (https://adafru.it/tBb). For the libraries, file an

issue on the specific library repository on GitHub. Be sure to include the steps to

replicate the issue as well as any other information you think is relevant. The more

detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of

CircuitPython or a library onto your CircuitPython hardware, and use it. Let us know

about any problems you find by posting a new issue to GitHub. Software testing on

both stable and unstable releases is a very important part of contributing

CircuitPython. The developers can't possibly find all the problems themselves! They

need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and

much more. If you have questions, remember that Discord and the Forums are both

there for help!

Adafruit Forums

The Adafruit Forums (https://adafru.it/jIf) are the perfect place for support. Adafruit

has wonderful paid support folks to answer any questions you may have. Whether

your hardware is giving you issues or your code doesn't seem to be working, the

forums are always there for you to ask. You need an Adafruit account to post to the

forums. You can use the same account you use to order from Adafruit.

©Adafruit Industries Page 83 of 124

https://github.com/adafruit/circuitpython/issues
https://forums.adafruit.com

While Discord may provide you with quicker responses than the forums, the forums

are a more reliable source of information. If you want to be certain you're getting an

Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything

Adafruit. The Adafruit CircuitPython and MicroPython (https://adafru.it/xXA) category

under "Supported Products & Projects" is the best place to post your CircuitPython

questions.

Be sure to include the steps you took to get to where you are. If it involves wiring,

post a picture! If your code is giving you trouble, include your code in your post!

These are great ways to make sure that there's enough information to help you with

your issue.

You might think you're just getting started, but you definitely know something that

someone else doesn't. The great thing about the forums is that you can help others

too! Everyone is welcome and encouraged to provide constructive feedback to any of

the posted questions. This is an excellent way to contribute to the community and

share your knowledge!

Read the Docs

Read the Docs (https://adafru.it/Beg) is a an excellent resource for a more detailed

look at the CircuitPython core and the CircuitPython libraries. This is where you'll find

©Adafruit Industries Page 84 of 124

https://forums.adafruit.com/viewforum.php?f=60
https://circuitpython.readthedocs.io/

things like API documentation and example code. For an in depth look at viewing and

understanding Read the Docs, check out the CircuitPython Documentation (https://

adafru.it/VFx) page!

PyPortal CircuitPython Setup

To use all the amazing features of your PyPortal with CircuitPython, you must first

install a number of libraries. This page covers that process.

Adafruit CircuitPython Bundle

Download the Adafruit CircuitPython Library Bundle. You can find the latest release

here:

Latest Adafruit CircuitPython Library

Bundle

https://adafru.it/ENC

Download the adafruit-circuitpython-bundle-*.x-mpy-*.zip bundle zip file where *.x

MATCHES THE VERSION OF CIRCUITPYTHON YOU INSTALLED, and unzip a folder of

the same name. Inside you'll find a lib folder. You have two options:

You can add the lib folder to your CIRCUITPY drive. This will ensure you have all

the drivers. But it will take a bunch of space on the 8 MB disk

Add each library as you need it, this will reduce the space usage but you'll need

to put in a little more effort.

•

•

©Adafruit Industries Page 85 of 124

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-documentation
https://circuitpython.org/libraries

At a minimum we recommend the following libraries, in fact we more than

recommend. They're basically required. So grab them and install them into CIRCUITP

Y/lib now!

adafruit_esp32spi - This is the library that gives you internet access via the

ESP32 using (you guessed it!) SPI transport. You need this for anything Internet

adafruit_requests - This library allows us to perform HTTP requests and get

responses back from servers. GET/POST/PUT/PATCH - they're all in here!

adafruit_pyportal - This is our friendly wrapper library that does a lot of our

projects, displays graphics and text, fetches data from the internet. Nearly all of

our projects depend on it!

adafruit_portalbase - This library is the base library that adafruit_pyportal library

is built on top of.

adafruit_touchscreen - a library for reading touches from the resistive

touchscreen. Handles all the analog noodling, rotation and calibration for you.

adafruit_io - this library helps connect the PyPortal to our free datalogging and

viewing service

adafruit_imageload - an image display helper, required for any graphics!

adafruit_display_text - not surprisingly, it displays text on the screen

adafruit_bitmap_font - we have fancy font support, and its easy to make new

fonts. This library reads and parses font files.

adafruit_slideshow - for making image slideshows - handy for quick display of

graphics and sound

neopixel - for controlling the onboard neopixel

adafruit_adt7410 - library to read the temperature from the on-board Analog

Devices ADT7410 precision temperature sensor (not necessary for Titano or

Pynt)

adafruit_sdcard - support for reading/writing data from the onboard SD card slot.

adafruit_bus_device - low level support for I2C/SPI

adafruit_fakerequests - This library allows you to create fake HTTP requests by

using local files.

Internet Connect!

Once you have CircuitPython setup and libraries installed we can get your board

connected to the Internet. Note that access to enterprise level secured WiFi networks

is not currently supported, only WiFi networks that require SSID and password.

To get connected, you will need to start by creating a secrets file.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 86 of 124

What's a secrets file?

We expect people to share tons of projects as they build CircuitPython WiFi widgets.

What we want to avoid is people accidentally sharing their passwords or secret

tokens and API keys. So, we designed all our examples to use a secrets.py file,

that is in your CIRCUITPY drive, to hold secret/private/custom data. That way you can

share your main project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

This file is where you keep secret settings, passwords, and tokens!

If you put them in the code you risk committing that info or sharing it

secrets = {

 'ssid' : 'home ssid',

 'password' : 'my password',

 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones

 'github_token' : 'fawfj23rakjnfawiefa',

 'hackaday_token' : 'h4xx0rs3kret',

 }

Inside is a python dictionary named secrets with a line for each entry. Each entry has

an entry name (say 'ssid') and then a colon to separate it from the entry key 'home

ssid' and finally a comma ,

At a minimum you'll need the ssid and password for your local WiFi setup. As you

make projects you may need more tokens and keys, just add them one line at a time.

See for example other tokens such as one for accessing github or the hackaday API.

Other non-secret data like your timezone can also go here, just cause it's called

secrets doesn't mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones (https://

adafru.it/EcP) and remember that if your city is not listed, look for a city in the same

time zone, for example Boston, New York, Philadelphia, Washington DC, and Miami

are all on the same time as New York.

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other

project-sharing sites.

©Adafruit Industries Page 87 of 124

http://worldtimeapi.org/timezones

Connect to WiFi

OK now you have your secrets setup - you can connect to the Internet. Lets use the

ESP32SPI and the Requests libraries - you'll need to visit the CircuitPython bundle

and install (https://adafru.it/ENC):

adafruit_bus_device

adafruit_esp32spi

adafruit_requests

neopixel

Into your lib folder. Once that's done, load up the following example using Mu or

your favorite editor:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import board

import busio

from digitalio import DigitalInOut

import adafruit_requests as requests

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

Get wifi details and more from a secrets.py file

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

print("ESP32 SPI webclient test")

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an AirLift Shield:

esp32_cs = DigitalInOut(board.D10)

esp32_ready = DigitalInOut(board.D7)

esp32_reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:

esp32_cs = DigitalInOut(board.D13)

esp32_ready = DigitalInOut(board.D11)

esp32_reset = DigitalInOut(board.D12)

If you have an externally connected ESP32:

NOTE: You may need to change the pins to reflect your wiring

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

•

•

•

•

©Adafruit Industries Page 88 of 124

https://circuitpython.org/libraries
https://circuitpython.org/libraries

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

requests.set_socket(socket, esp)

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:

 print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware_version)

print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():

 print("\t%s\t\tRSSI: %d" % (str(ap["ssid"], "utf-8"), ap["rssi"]))

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

print("My IP address is", esp.pretty_ip(esp.ip_address))

print(

 "IP lookup adafruit.com: %s" %

esp.pretty_ip(esp.get_host_by_name("adafruit.com"))

)

print("Ping google.com: %d ms" % esp.ping("google.com"))

esp._debug = True

print("Fetching text from", TEXT_URL)

r = requests.get(TEXT_URL)

print("-" * 40)

print(r.text)

print("-" * 40)

r.close()

print()

print("Fetching json from", JSON_URL)

r = requests.get(JSON_URL)

print("-" * 40)

print(r.json())

print("-" * 40)

r.close()

print("Done!")

And save it to your board, with the name code.py .

Don't forget you'll also need to create the secrets.py file as seen above, with your

WiFi ssid and password.

In a serial console, you should see something like the following. For more information

about connecting with a serial console, view the guide Connecting to the Serial

Console (https://adafru.it/Bec).

©Adafruit Industries Page 89 of 124

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

In order, the example code...

Initializes the ESP32 over SPI using the SPI port and 3 control pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

Tells our requests library the type of socket we're using (socket type varies by

connectivity type - we'll be using the adafruit_esp32spi_socket for this example).

We'll also set the interface to an esp object. This is a little bit of a hack, but it lets us

use requests like CPython does.

requests.set_socket(socket, esp)

Verifies an ESP32 is found, checks the firmware and MAC address

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:

 print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware_version)

print("MAC addr:", [hex(i) for i in esp.MAC_address])

©Adafruit Industries Page 90 of 124

Performs a scan of all access points it can see and prints out the name and signal

strength:

for ap in esp.scan_networks():

 print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

Connects to the AP we've defined here, then prints out the local IP address, attempts

to do a domain name lookup and ping google.com to check network connectivity

(note sometimes the ping fails or takes a while, this isn't a big deal)

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

print("My IP address is", esp.pretty_ip(esp.ip_address))

print(

 "IP lookup adafruit.com: %s" %

esp.pretty_ip(esp.get_host_by_name("adafruit.com"))

OK now we're getting to the really interesting part. With a SAMD51 or other large-RAM

(well, over 32 KB) device, we can do a lot of neat tricks. Like for example we can

implement an interface a lot like requests (https://adafru.it/E9o) - which makes getting

data really really easy

To read in all the text from a web URL call requests.get - you can pass in https

URLs for SSL connectivity

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

print("Fetching text from", TEXT_URL)

r = requests.get(TEXT_URL)

print('-'*40)

print(r.text)

print('-'*40)

r.close()

Or, if the data is in structured JSON, you can get the json pre-parsed into a Python

dictionary that can be easily queried or traversed. (Again, only for nRF52840, M4 and

other high-RAM boards)

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

print("Fetching json from", JSON_URL)

r = requests.get(JSON_URL)

print('-'*40)

print(r.json())

print('-'*40)

r.close()

©Adafruit Industries Page 91 of 124

http://docs.python-requests.org/en/master/

Requests

We've written a requests-like (https://adafru.it/Kpa) library for web interfacing named A

dafruit_CircuitPython_Requests (https://adafru.it/FpW). This library allows you to send

HTTP/1.1 requests without "crafting" them and provides helpful methods for parsing

the response from the server.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

adafruit_requests usage with an esp32spi_socket

import board

import busio

from digitalio import DigitalInOut

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with

"ssid" and

"password" keys with your WiFi credentials. DO NOT share that file or commit it

into Git or other

source control.

pylint: disable=no-name-in-module,wrong-import-order

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:

esp32_cs = DigitalInOut(board.D13)

esp32_ready = DigitalInOut(board.D11)

esp32_reset = DigitalInOut(board.D12)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface

socket.set_interface(esp)

requests.set_socket(socket, esp)

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

©Adafruit Industries Page 92 of 124

https://requests.readthedocs.io/en/master/
https://github.com/adafruit/Adafruit_CircuitPython_Requests
https://github.com/adafruit/Adafruit_CircuitPython_Requests

JSON_GET_URL = "https://httpbin.org/get"

JSON_POST_URL = "https://httpbin.org/post"

print("Fetching text from %s" % TEXT_URL)

response = requests.get(TEXT_URL)

print("-" * 40)

print("Text Response: ", response.text)

print("-" * 40)

response.close()

print("Fetching JSON data from %s" % JSON_GET_URL)

response = requests.get(JSON_GET_URL)

print("-" * 40)

print("JSON Response: ", response.json())

print("-" * 40)

response.close()

data = "31F"

print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))

response = requests.post(JSON_POST_URL, data=data)

print("-" * 40)

json_resp = response.json()

Parse out the 'data' key from json_resp dict.

print("Data received from server:", json_resp["data"])

print("-" * 40)

response.close()

json_data = {"Date": "July 25, 2019"}

print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))

response = requests.post(JSON_POST_URL, json=json_data)

print("-" * 40)

json_resp = response.json()

Parse out the 'json' key from json_resp dict.

print("JSON Data received from server:", json_resp["json"])

print("-" * 40)

response.close()

The code first sets up the ESP32SPI interface. Then, it initializes a request object

using an ESP32 socket and the esp object.

import board

import busio

from digitalio import DigitalInOut

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

import adafruit_requests as requests

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")

while not esp.is_connected:

©Adafruit Industries Page 93 of 124

 try:

 esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')

 except RuntimeError as e:

 print("could not connect to AP, retrying: ",e)

 continue

print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface

requests.set_socket(socket, esp)

HTTP GET with Requests

The code makes a HTTP GET request to Adafruit's WiFi testing website - http://

wifitest.adafruit.com/testwifi/index.html (https://adafru.it/Fp-).

To do this, we'll pass the URL into requests.get() . We're also going to save the

response from the server into a variable named response .

While we requested data from the server, we'd what the server responded with. Since

we already saved the server's response , we can read it back. Luckily for us, request

s automatically decodes the server's response into human-readable text, you can

read it back by calling response.text .

Lastly, we'll perform a bit of cleanup by calling response.close() . This closes,

deletes, and collect's the response's data.

print("Fetching text from %s"%TEXT_URL)

response = requests.get(TEXT_URL)

print('-'*40)

print("Text Response: ", response.text)

print('-'*40)

response.close()

While some servers respond with text, some respond with json-formatted data

consisting of attribute–value pairs.

CircuitPython_Requests can convert a JSON-formatted response from a server into a

CPython dict. object.

We can also fetch and parse json data. We'll send a HTTP get to a url we know returns

a json-formatted response (instead of text data).

Then, the code calls response.json() to convert the response to a CPython dict .

©Adafruit Industries Page 94 of 124

http://wifitest.adafruit.com/testwifi/index.html
http://wifitest.adafruit.com/testwifi/index.html

print("Fetching JSON data from %s"%JSON_GET_URL)

response = requests.get(JSON_GET_URL)

print('-'*40)

print("JSON Response: ", response.json())

print('-'*40)

response.close()

HTTP POST with Requests

Requests can also POST data to a server by calling the requests.post method,

passing it a data value.

data = '31F'

print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))

response = requests.post(JSON_POST_URL, data=data)

print('-'*40)

json_resp = response.json()

Parse out the 'data' key from json_resp dict.

print("Data received from server:", json_resp['data'])

print('-'*40)

response.close()

You can also post json-formatted data to a server by passing json_data into the re

quests.post method.

 json_data = {"Date" : "July 25, 2019"}

print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))

response = requests.post(JSON_POST_URL, json=json_data)

print('-'*40)

json_resp = response.json()

Parse out the 'json' key from json_resp dict.

print("JSON Data received from server:", json_resp['json'])

print('-'*40)

response.close()

Advanced Requests Usage

Want to send custom HTTP headers, parse the response as raw bytes, or handle a

response's http status code in your CircuitPython code?

We've written an example to show advanced usage of the requests module below.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import board

import busio

©Adafruit Industries Page 95 of 124

from digitalio import DigitalInOut

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with

"ssid" and

"password" keys with your WiFi credentials. DO NOT share that file or commit it

into Git or other

source control.

pylint: disable=no-name-in-module,wrong-import-order

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface

socket.set_interface(esp)

requests.set_socket(socket, esp)

JSON_GET_URL = "http://httpbin.org/get"

Define a custom header as a dict.

headers = {"user-agent": "blinka/1.0.0"}

print("Fetching JSON data from %s..." % JSON_GET_URL)

response = requests.get(JSON_GET_URL, headers=headers)

print("-" * 60)

json_data = response.json()

headers = json_data["headers"]

print("Response's Custom User-Agent Header: {0}".format(headers["User-Agent"]))

print("-" * 60)

Read Response's HTTP status code

print("Response HTTP Status Code: ", response.status_code)

print("-" * 60)

Close, delete and collect the response data

response.close()

©Adafruit Industries Page 96 of 124

WiFi Manager

That simpletest example works but it's a little finicky - you need to constantly check

WiFi status and have many loops to manage connections and disconnections. For

more advanced uses, we recommend using the WiFiManager object. It will wrap the

connection/status/requests loop for you - reconnecting if WiFi drops, resetting the

ESP32 if it gets into a bad state, etc.

Here's a more advanced example that shows the WiFi manager and also how to POST

data with some extra headers:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import time

import board

import busio

from digitalio import DigitalInOut

import neopixel

from adafruit_esp32spi import adafruit_esp32spi

from adafruit_esp32spi import adafruit_esp32spi_wifimanager

print("ESP32 SPI webclient test")

Get wifi details and more from a secrets.py file

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

"""Use below for Most Boards"""

status_light = neopixel.NeoPixel(

 board.NEOPIXEL, 1, brightness=0.2

) # Uncomment for Most Boards

"""Uncomment below for ItsyBitsy M4"""

status_light = dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1,

brightness=0.2)

Uncomment below for an externally defined RGB LED

import adafruit_rgbled

from adafruit_esp32spi import PWMOut

RED_LED = PWMOut.PWMOut(esp, 26)

GREEN_LED = PWMOut.PWMOut(esp, 27)

BLUE_LED = PWMOut.PWMOut(esp, 25)

status_light = adafruit_rgbled.RGBLED(RED_LED, BLUE_LED, GREEN_LED)

wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light)

counter = 0

©Adafruit Industries Page 97 of 124

while True:

 try:

 print("Posting data...", end="")

 data = counter

 feed = "test"

 payload = {"value": data}

 response = wifi.post(

 "https://io.adafruit.com/api/v2/"

 + secrets["aio_username"]

 + "/feeds/"

 + feed

 + "/data",

 json=payload,

 headers={"X-AIO-KEY": secrets["aio_key"]},

)

 print(response.json())

 response.close()

 counter = counter + 1

 print("OK")

 except (ValueError, RuntimeError) as e:

 print("Failed to get data, retrying\n", e)

 wifi.reset()

 continue

 response = None

 time.sleep(15)

You'll note here we use a secrets.py file to manage our SSID info. The wifimanager is

given the ESP32 object, secrets and a neopixel for status indication.

Note, you'll need to add a some additional information to your secrets file so that the

code can query the Adafruit IO API:

aio_username

aio_key

You can go to your adafruit.io View AIO Key link to get those two values and add

them to the secrets file, which will now look something like this:

This file is where you keep secret settings, passwords, and tokens!

If you put them in the code you risk committing that info or sharing it

secrets = {

 'ssid' : '_your_ssid_',

 'password' : '_your_wifi_password_',

 'timezone' : "America/Los_Angeles", # http://worldtimeapi.org/timezones

 'aio_username' : '_your_aio_username_',

 'aio_key' : '_your_aio_key_',

 }

Next, set up an Adafruit IO feed named test

If you do not know how to set up a feed, follow this page and come back when

you've set up a feed named test . (https://adafru.it/f5k)

•

•

•

©Adafruit Industries Page 98 of 124

https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed

We can then have a simple loop for posting data to Adafruit IO without having to deal

with connecting or initializing the hardware!

Take a look at your test feed on Adafruit.io and you'll see the value increase each

time the CircuitPython board posts data to it!

Arduino IDE Setup

The first thing you will need to do is to download the latest release of the Arduino

IDE. You will need to be using version 1.8 or higher for this guide

Arduino IDE Download

https://adafru.it/f1P

After you have downloaded and installed the latest version of Arduino IDE, you will

need to start the IDE and navigate to the Preferences menu. You can access it from

the File menu in Windows or Linux, or the Arduino menu on OS X.

©Adafruit Industries Page 99 of 124

http://www.arduino.cc/en/Main/Software

A dialog will pop up just like the one shown below.

We will be adding a URL to the new Additional Boards Manager URLs option. The list

of URLs is comma separated, and you will only have to add each URL once. New

Adafruit boards and updates to existing boards will automatically be picked up by the

Board Manager each time it is opened. The URLs point to index files that the Board

Manager uses to build the list of available & installed boards.

©Adafruit Industries Page 100 of 124

To find the most up to date list of URLs you can add, you can visit the list of third party

board URLs on the Arduino IDE wiki (https://adafru.it/f7U). We will only need to add

one URL to the IDE in this example, but you can add multiple URLS by separating

them with commas. Copy and paste the link below into the Additional Boards

Manager URLs option in the Arduino IDE preferences.

https://adafruit.github.io/arduino-board-index/

package_adafruit_index.json

Here's a short description of each of the Adafruit supplied packages that will be

available in the Board Manager when you add the URL:

Adafruit AVR Boards - Includes support for Flora, Gemma, Feather 32u4,

ItsyBitsy 32u4, Trinket, & Trinket Pro.

Adafruit SAMD Boards - Includes support for Feather M0 and M4, Metro M0 and

M4, ItsyBitsy M0 and M4, Circuit Playground Express, Gemma M0 and Trinket

M0

Arduino Leonardo & Micro MIDI-USB - This adds MIDI over USB support for the

Flora, Feather 32u4, Micro and Leonardo using the arcore project (https://

adafru.it/eSI).

If you have multiple boards you want to support, say ESP8266 and Adafruit, have

both URLs in the text box separated by a comma (,)

Once done click OK to save the new preference settings. Next we will look at

installing boards with the Board Manager.

•

•

•

©Adafruit Industries Page 101 of 124

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls
https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls
https://github.com/rkistner/arcore

Now continue to the next step to actually install the board support package!

Using with Arduino IDE

The Feather/Metro/Gemma/QTPy/Trinket M0 and M4 use an ATSAMD21 or ATSAMD51

chip, and you can pretty easily get it working with the Arduino IDE. Most libraries

(including the popular ones like NeoPixels and display) will work with the M0 and M4,

especially devices & sensors that use I2C or SPI.

Now that you have added the appropriate URLs to the Arduino IDE preferences in the

previous page, you can open the Boards Manager by navigating to the Tools->Board

menu.

Once the Board Manager opens, click on the category drop down menu on the top

left hand side of the window and select All. You will then be able to select and install

the boards supplied by the URLs added to the preferences.

Install SAMD Support

First up, install the latest Arduino SAMD Boards (version 1.6.11 or later)

You can type Arduino SAMD in the top search bar, then when you see the entry, click I

nstall

Remember you need SETUP the Arduino IDE to support our board packages -

see the previous page on how to add adafruit's URL to the preferences

©Adafruit Industries Page 102 of 124

Install Adafruit SAMD

Next you can install the Adafruit SAMD package to add the board file definitions

Make sure you have Type All selected to the left of the Filter your search... box

You can type Adafruit SAMD in the top search bar, then when you see the entry, click I

nstall

Even though in theory you don't need to - I recommend rebooting the IDE

Quit and reopen the Arduino IDE to ensure that all of the boards are properly

installed. You should now be able to select and upload to the new boards listed in the

Tools->Board menu.

©Adafruit Industries Page 103 of 124

Select the matching board, the current options are:

Feather M0 (for use with any Feather M0 other than the Express)

Feather M0 Express

Metro M0 Express

Circuit Playground Express

Gemma M0

Trinket M0

QT Py M0

ItsyBitsy M0

Hallowing M0

Crickit M0 (this is for direct programming of the Crickit, which is probably not

what you want! For advanced hacking only)

Metro M4 Express

Grand Central M4 Express

ItsyBitsy M4 Express

Feather M4 Express

Trellis M4 Express

PyPortal M4

PyPortal M4 Titano

PyBadge M4 Express

Metro M4 Airlift Lite

PyGamer M4 Express

MONSTER M4SK

Hallowing M4

MatrixPortal M4

BLM Badge

Install Drivers (Windows 7 & 8 Only)

When you plug in the board, you'll need to possibly install a driver

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 104 of 124

Click below to download our Driver Installer

Download Latest Adafruit Drivers

package

https://adafru.it/mb8

Download and run the installer

Run the installer! Since we bundle the SiLabs and FTDI drivers as well, you'll need to

click through the license

Select which drivers you want to install, the defaults will set you up with just about

every Adafruit board!

©Adafruit Industries Page 105 of 124

https://github.com/adafruit/Adafruit_Windows_Drivers/releases

Click Install to do the installin'

Blink

Now you can upload your first blink sketch!

Plug in the M0 or M4 board, and wait for it to be recognized by the OS (just takes a

few seconds). It will create a serial/COM port, you can now select it from the drop-

down, it'll even be 'indicated' as Trinket/Gemma/Metro/Feather/ItsyBitsy/Trellis!

©Adafruit Industries Page 106 of 124

Please note, the QT Py and Trellis M4 Express are two of our very few boards that

does not have an onboard pin 13 LED so you can follow this section to practice

uploading but you wont see an LED blink!

Now load up the Blink example

// the setup function runs once when you press reset or power the board

void setup() {

 // initialize digital pin 13 as an output.

 pinMode(13, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

And click upload! That's it, you will be able to see the LED blink rate change as you

adapt the delay() calls.

Successful Upload

If you have a successful upload, you'll get a bunch of red text that tells you that the

device was found and it was programmed, verified & reset

If you are having issues, make sure you selected the matching Board in the menu

that matches the hardware you have in your hand.

©Adafruit Industries Page 107 of 124

After uploading, you may see a message saying "Disk Not Ejected Properly" about the

...BOOT drive. You can ignore that message: it's an artifact of how the bootloader and

uploading work.

Compilation Issues

If you get an alert that looks like

Cannot run program "{runtime.tools.arm-none-eabi-gcc.path}\bin\arm-non-eabi-g++"

Make sure you have installed the Arduino SAMD boards package, you need both Ard

uino & Adafruit SAMD board packages

©Adafruit Industries Page 108 of 124

Manually bootloading

If you ever get in a 'weird' spot with the bootloader, or you have uploaded code that

crashes and doesn't auto-reboot into the bootloader, click the RST button twice (like a

double-click)to get back into the bootloader.

The red LED will pulse and/or RGB LED will be green, so you know that its in

bootloader mode.

Once it is in bootloader mode, you can select the newly created COM/Serial port and

re-try uploading.

You may need to go back and reselect the 'normal' USB serial port next time you want

to use the normal upload.

Ubuntu & Linux Issue Fix

 Follow the steps for installing Adafruit's udev rules on this page. (https://adafru.it/iOE)

Arduino Libraries

OK now that you have Arduino IDE set up, drivers installed if necessary and you've

practiced uploading code, you can start installing all the Libraries we'll be using to

program it.

There's a lot of libraries!

©Adafruit Industries Page 109 of 124

file:///home/adafruit-arduino-ide-setup/linux-setup#udev-rules

Install Libraries

Open up the library manager...

And install the following libraries:

Adafruit NeoPixel

This will let you light up the status LED on the back

Adafruit SPIFlash

This will let you read/write to the onboard FLASH memory with super-fast QSPI

support

Adafruit Zero DMA

This is used by the Graphics Library if you choose to use DMA

©Adafruit Industries Page 110 of 124

Adafruit GFX

This is the graphics library used to draw to the screen

If using an older (pre-1.8.10) Arduino IDE, locate and install Adafruit_BusIO (newer

versions do this automatically when installing Adafruit_GFX).

Adafruit ILI9341

The display on the PyPortal!

Adafruit HX8357

The display on the PyPortal Titano!

Adafruit Touchscreen

For reading touchscreen points on the resistive touchscreen

©Adafruit Industries Page 111 of 124

Analog Devices ADT7410

For reading temperature data from the onboard ADT7410

WiFiNINA

Will talk to the ESP32 WiFi co-processor to connect to the internet!

Adafruit ImageReader

For reading bitmaps from SD and displaying

Arduino Test

Once you've got the IDE installed and libraries in place you can run our test sketch.

This will check all the hardware, and display it on the screen, its sort of a universal

test because every part is checked. It's also a great reference if you want to know

how to read the light sensor or initialize the touch screen.

©Adafruit Industries Page 112 of 124

It's normal to get SD Card...Failed if there is no SD card in the socket.

The light sensor value ranges from 0 (dark) to 1023 (bright)

The temperature sensor will heat up if the backlight is on for a while, that's also

normal! To avoid self-heating turn or or lower down the backlight brightness

D3 and D4 measure the analog voltages on the 3 pin JST connectors. They'll be

floating until some voltage is applied to them.

// This program does a test of all the hardware so you can get an example of how to

read

// sensors, touchscreen, and display stuff!

#include "SPI.h"

#include "Adafruit_GFX.h"

#include "Adafruit_ILI9341.h"

#include <Adafruit_SPIFlash.h>

#include "Adafruit_ADT7410.h"

#include "TouchScreen.h"

#include <SdFat.h>

#include <WiFiNINA.h>

#include "coin.h"

#define RED_LED 13

#define TFT_RESET 24

#define TFT_BACKLIGHT 25

#define LIGHT_SENSOR A2

#define SD_CS 32

Click the Download Project Bundle button below to ensure you get both the

Arduino program and the associated coin.h audio file!

©Adafruit Industries Page 113 of 124

#define SPKR_SHUTDOWN 50

#define TFT_D0 34 // Data bit 0 pin (MUST be on PORT byte boundary)

#define TFT_WR 26 // Write-strobe pin (CCL-inverted timer output)

#define TFT_DC 10 // Data/command pin

#define TFT_CS 11 // Chip-select pin

#define TFT_RST 24 // Reset pin

#define TFT_RD 9 // Read-strobe pin

#define TFT_BACKLIGHT 25

// ILI9341 with 8-bit parallel interface:

Adafruit_ILI9341 tft = Adafruit_ILI9341(tft8bitbus, TFT_D0, TFT_WR, TFT_DC, TFT_CS,

TFT_RST, TFT_RD);

Adafruit_FlashTransport_QSPI flashTransport(PIN_QSPI_SCK, PIN_QSPI_CS, PIN_QSPI_IO0,

PIN_QSPI_IO1, PIN_QSPI_IO2, PIN_QSPI_IO3);

Adafruit_SPIFlash flash(&flashTransport);

Adafruit_ADT7410 tempsensor = Adafruit_ADT7410();

#define YP A4 // must be an analog pin, use "An" notation!

#define XM A7 // must be an analog pin, use "An" notation!

#define YM A6 // can be a digital pin

#define XP A5 // can be a digital pin

TouchScreen ts = TouchScreen(XP, YP, XM, YM, 300);

#define X_MIN 750

#define X_MAX 325

#define Y_MIN 840

#define Y_MAX 240

Adafruit_GFX_Button coin = Adafruit_GFX_Button();

SdFat SD;

void setup() {

 Serial.begin(115200);

 //while (!Serial);

 Serial.println("All Test!");

 pinMode(RED_LED, OUTPUT);

 pinMode(TFT_BACKLIGHT, OUTPUT);

 digitalWrite(TFT_BACKLIGHT, HIGH);

 pinMode(TFT_RESET, OUTPUT);

 digitalWrite(TFT_RESET, HIGH);

 delay(10);

 digitalWrite(TFT_RESET, LOW);

 delay(10);

 digitalWrite(TFT_RESET, HIGH);

 delay(10);

 tft.begin();

 tft.fillScreen(ILI9341_BLACK);

 tft.setTextSize(2);

 tft.setTextColor(ILI9341_GREEN);

 tft.setTextWrap(true);

 tft.setCursor(0, 0);

 tft.print("QSPI Flash...");

 if (!flash.begin()){

 Serial.println("Could not find flash on QSPI bus!");

 tft.setTextColor(ILI9341_RED);

 tft.println("FAILED");

 while (1);

 }

 Serial.println("Reading QSPI ID");

 Serial.print("JEDEC ID: 0x"); Serial.println(flash.getJEDECID(), HEX);

©Adafruit Industries Page 114 of 124

 tft.setTextColor(ILI9341_GREEN);

 tft.print("QSPI Flash JEDEC 0x"); tft.println(flash.getJEDECID(), HEX);

 /*************** SD CARD */

 tft.setCursor(0, 48);

 tft.print("SD Card...");

 if (!SD.begin(SD_CS)) {

 Serial.println("Card init. failed!");

 tft.setTextColor(ILI9341_RED);

 tft.println("FAILED");

 tft.setTextColor(ILI9341_GREEN);

 } else {

 tft.println("OK!");

 }

 /*************** WiFi Module */

 tft.setCursor(0, 64);

 tft.print("WiFi Module...");

 WiFi.status();

 delay(100);

 if (WiFi.status() == WL_NO_MODULE) {

 Serial.println("ESP32 SPI not found");

 tft.setTextColor(ILI9341_RED);

 tft.println("FAILED");

 tft.setTextColor(ILI9341_GREEN);

 } else {

 Serial.println("ESP32 SPI mode found");

 tft.println("OK!");

 }

 /*************** Temperature sensor */

 tft.setCursor(0, 80);

 tft.print("ADT7410...");

 if (!tempsensor.begin()) {

 Serial.println("Couldn't find ADT7410!");

 tft.setTextColor(ILI9341_RED);

 tft.println("FAILED");

 tft.setTextColor(ILI9341_GREEN);

 } else {

 Serial.println("ADT7410 found");

 tft.println("OK!");

 }

 coin.initButton(&tft, 120, 280, 100, 50, ILI9341_WHITE, ILI9341_YELLOW,

ILI9341_BLACK, "Sound", 2);

 coin.drawButton();

 analogWriteResolution(12);

 analogWrite(A0, 128);

 pinMode(SPKR_SHUTDOWN, OUTPUT);

 digitalWrite(SPKR_SHUTDOWN, LOW);

}

void loop() {

 digitalWrite(RED_LED, HIGH);

 tft.setTextColor(ILI9341_WHITE);

 // read light sensor

 tft.fillRect(160, 100, 240, 16, ILI9341_BLACK);

 tft.setCursor(0, 100);

 uint16_t light = analogRead(LIGHT_SENSOR);

 Serial.print("light sensor: "); Serial.println(light);

 tft.print("Light sensor: "); tft.println(light);

 // read temp sensor

 tft.fillRect(150, 116, 240, 16, ILI9341_BLACK);

 tft.setCursor(0, 116);

©Adafruit Industries Page 115 of 124

 float temp = tempsensor.readTempC();

 Serial.print("temp sensor: "); Serial.println(temp, 2);

 tft.print("Temp sensor: "); tft.println(temp, 2);

 // externals

 tft.fillRect(0, 132, 240, 32, ILI9341_BLACK);

 tft.setCursor(0, 132);

 float d3 = (float)analogRead(A1) * 3.3 / 1024;

 float d4 = (float)analogRead(A3) * 3.3 / 1024;

 Serial.print("STEMMA: ");

 Serial.print(d3,1); Serial.print(", ");

 Serial.print(d4,1); Serial.println();

 tft.print("D3: "); tft.println(d3,1);

 tft.print("D4: "); tft.println(d4,1);

 tft.fillRect(80, 164, 240, 16, ILI9341_BLACK);

 tft.setCursor(0, 164);

 tft.print("Touch: ");

 TSPoint p = ts.getPoint();

 // we have some minimum pressure we consider 'valid'

 // pressure of 0 means no pressing!

 if (p.z > ts.pressureThreshhold) {

 Serial.print("X = "); Serial.print(p.x);

 Serial.print("\tY = "); Serial.print(p.y);

 Serial.print("\tPressure = "); Serial.println(p.z);

 int16_t x = map(p.x, X_MIN, X_MAX, 0, 240);

 int16_t y = map(p.y, Y_MIN, Y_MAX, 0, 320);

 tft.print("("); tft.print(x); tft.print(", "); tft.print(y); tft.println(")");

 if (coin.contains(x, y)) {

 Serial.println("Ding!");

 coin.press(true);

 } else {

 coin.press(false);

 }

 } else {

 coin.press(false);

 }

 if (coin.justPressed()) {

 coin.drawButton(true);

 digitalWrite(SPKR_SHUTDOWN, HIGH);

 uint32_t i, prior, usec = 1000000L / SAMPLE_RATE;

 prior = micros();

 for (uint32_t i=0; i<sizeof(coinaudio); i++) {

 uint32_t t;

 while((t = micros()) - prior < usec);

 analogWrite(A0, (uint16_t)coinaudio[i]);

 prior = t;

 }

 digitalWrite(SPKR_SHUTDOWN, LOW);

 }

 if (coin.justReleased()) {

 coin.drawButton(false);

 }

 digitalWrite(RED_LED, LOW);

 delay(20);

}

©Adafruit Industries Page 116 of 124

Updating ESP32 Firmware

There may come a time when you want to update the firmware on the ESP32 itself.

This isn't something we expect you'll do often if at all, but its good to know how if you

need to.

We have a guide here which details the process of updating the ESP32 firmware on

Airlift All-in-One boards (including the PyPortal, MatrixPortal, and Metro M4 AirLift)

here... (https://adafru.it/FWs)

Parsing JSON

Parsing JSON from the Web

Here an example of how you can display text data from the web with PyPortal, by

making an internet-connected quote book. (https://adafru.it/Hjb)

import time

import board

from adafruit_pyportal import PyPortal

Set up where we'll be fetching data from

DATA_SOURCE = "https://www.adafruit.com/api/quotes.php"

QUOTE_LOCATION = [0, 'text']

AUTHOR_LOCATION = [0, 'author']

the current working directory (where this file is)

cwd = ("/"+__file__).rsplit('/', 1)[0]

pyportal = PyPortal(url=DATA_SOURCE,

©Adafruit Industries Page 117 of 124

https://learn.adafruit.com/upgrading-esp32-firmware/upgrade-an-airlift-all-in-one-board
https://learn.adafruit.com/upgrading-esp32-firmware/upgrade-an-airlift-all-in-one-board
https://learn.adafruit.com/upgrading-esp32-firmware/upgrade-an-airlift-all-in-one-board
https://learn.adafruit.com/pyportal-adafruit-quote-board/overview
https://learn.adafruit.com/pyportal-adafruit-quote-board/overview

 json_path=(QUOTE_LOCATION, AUTHOR_LOCATION),

 status_neopixel=board.NEOPIXEL,

 default_bg=cwd+"/quote_background.bmp",

 text_font=cwd+"/fonts/Arial-ItalicMT-17.bdf",

 text_position=((20, 120), # quote location

 (5, 210)), # author location

 text_color=(0xFFFFFF, # quote text color

 0x8080FF), # author text color

 text_wrap=(35, # characters to wrap for quote

 0), # no wrap for author

 text_maxlen=(180, 30), # max text size for quote & author

)

speed up projects with lots of text by preloading the font!

pyportal.preload_font()

while True:

 try:

 value = pyportal.fetch()

 print("Response is", value)

 except (ValueError, RuntimeError) as e:

 print("Some error occured, retrying! -", e)

 time.sleep(60)

JSON

The neat part is that the text is not coming from a file on the device (see how to do

this next), but rather it is grabbed from a website!

Adafruit.com has a PHP script at the adafruit.com/api/quotes.php page. Each time it is

requested, it returns a new quote from a large database of quotes.

In fact, you can run the same query the PyPortal does to see the results. Copy and

paste this link: https://www.adafruit.com/api/quotes.php

into your browser and you'll see a result like this:

[

 {

 "text": "Science, my lad, is made up of mistakes, but they are mistakes which it is useful to make, because they lead little by little to the truth",

 "author": "Jules Verne"

 }

]

That result is the quote formatted as a JSON (JavaScript Object Notation) array. It is

comprised of a single element with two keys: text and author.

The value of the text key is Science, my lad, is made up of mistakes,

but they are mistakes which it is useful to make, because they

lead little by little to the truth

•

©Adafruit Industries Page 118 of 124

The value of the author key is Jules Verne

Since this JSON object has a consistent way to return the results to us, the code

we're running on the PyPortal can easily parse the data and display it!

You can see how it's done in this part of code.py:

Set up where we'll be fetching data from

DATA_SOURCE = "https://www.adafruit.com/api/quotes.php"

QUOTE_LOCATION = [0, 'text']

AUTHOR_LOCATION = [0, 'author']

Then, in the pyportal query we ask for the text and author name from that URL, and

then use the text_ arguments to set the font , position , color , wrap , and ma

xlen of the text when it is displayed.

pyportal = PyPortal(url=DATA_SOURCE,

 json_path=(QUOTE_LOCATION, AUTHOR_LOCATION),

 status_neopixel=board.NEOPIXEL,

 default_bg=cwd+"quote_background.bmp",

 text_font=cwd+"fonts/Arial-ItalicMT-17.bdf",

 text_position=((20, 40), # quote location

 (5, 190)), # author location

 text_color=(0xFFFFFF, # quote text color

 0x8080FF), # author text color

 text_wrap=(35, # characters to wrap for quote

 0), # no wrap for author

 text_maxlen=(180, 30), # max text size for quote & author

)

With all of this prepared, during the main loop of while True: the code will query

the Adafruit quotes page for the JSON data, and display it, and then wait one minute

until repeating the process.

Parsing local JSON files

If you would like to avoid pulling data from a web page or maybe you can't get access

to a specific API key, you can use a "local" JSON file to pull data from.

To implement this local data sourcing method, create a new file and name it local.t

xt . Populate this file with the JSON data that you would like to use. For example, you

could use the JSON data provided above and make sure the format of the data is the

same. Save this file on the CIRCUITPY drive in the root.

You should not need to change anything in your code.

•

©Adafruit Industries Page 119 of 124

And that's it! The JSON data will now be pulled from this local file!

PyPortal Hardware FAQ

For CircuitPython-specific issues, see the CircuitPython software FAQ (https://

adafru.it/HOE).

The PyPortal screen is all white or blank when powered
on.

In shipping, the connector for the display may pop the retention tab(s) (red circles

below). If you see one that is not in the position below, check to see if the orange

display ribbon cable is straight. If so, gently push the tab down towards the main

connector.

If you see the ribbon cable crooked, pop both tabs and slide the cable gently so it

is in the connector like the picture and straight. then clip each side down.

Repower the PyPortal afterwards and hopefully you'll see the CircuitPython boot

text on the screen.

©Adafruit Industries Page 120 of 124

https://learn.adafruit.com/adafruit-pyportal/frequently-asked-questions

I'm using the STEMMA I2C connector to attach sensors
and experiencing issues.

If you look at the pads circled in yellow below, there is a tiny connection between

the V and 5 pads indicating a default of 5V power, which may cause issue in

certain setups. If you are connecting one our sensors and seeing boot or other

issues, try changing the voltage to 3.3V

If you want 3.3 volt power for your I2C connector, carefully cut that tiny trace

between V and 5, then using a soldering iron connect the 3 and V pads. The

PyPortal was not made to switch often between these two values so double check

your I2C data sheets, some sensors can take 3.3 and 5V power so leaving it at 5

should be ok.

I'm seeing "AT" or other text being inserted at the REPL
prompt.

If you're on Linux, and are seeing multi-second delays connecting to the serial

console, or are seeing "AT" and other gibberish when you connect, then the

modemmanager service might be interfering. Just remove it; it doesn't have much

use unless you're still using dial-up modems. To remove, type this command at a

shell:

sudo apt purge modemmanager

What does the status NeoPixel indicate once my code.py
is running?

Once your PyPortal boots up and successfully loads your code.py or main.py, the

status NeoPixel will turn green briefly. Then, the NeoPixel will show one of the

following color codes to indicate the status of the WiFi connection/activity or file

operations:

Red = not connected to WiFi

•

©Adafruit Industries Page 121 of 124

Blue = connected to WiFi

Yellow = fetching data

Blue = got data

Cyan = file opening

My PyPortal Pynt JST STEMMA sockets arent working!

The PyPortal Pynt has the D3 and D4 sockets mislabeled, they should be swapped (to

match the pyportal classic)

Downloads

Files

ATSAMD51J20 datasheet (https://adafru.it/E9c)

EagleCAD PCB files on GitHub (https://adafru.it/E9d)

3D Models on GitHub (https://adafru.it/HTB)

Fritzing object in Adafruit Fritzing Library (https://adafru.it/HOF)

•

•

•

•

•

•

•

•

©Adafruit Industries Page 122 of 124

http://ww1.microchip.com/downloads/en/DeviceDoc/60001507C.pdf
https://github.com/adafruit/Adafruit-PyPortal-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/master/4444%20PyPortal%20Titano
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20PyPortal%20Titano.fzpz

Schematic and Fab Print

©Adafruit Industries Page 123 of 124

©Adafruit Industries Page 124 of 124

	Adafruit PyPortal Titano
	Table of Contents
	Overview
	Pinouts
	What is CircuitPython?
	CircuitPython
	Installing the Mu Editor
	Creating and Editing Code
	Connecting to the Serial Console
	Interacting with the Serial Console
	The REPL
	CircuitPython Libraries
	CircuitPython Pins and Modules
	Frequently Asked Questions
	Troubleshooting
	"Uninstalling" CircuitPython
	Welcome to the Community!
	PyPortal CircuitPython Setup
	Internet Connect!
	Arduino IDE Setup
	Using with Arduino IDE
	Arduino Libraries
	Arduino Test
	Updating ESP32 Firmware
	Parsing JSON
	PyPortal Hardware FAQ
	Downloads

	Overview
	Pinouts
	Microcontroller and Flash
	WiFi
	Display and Display Connector
	Light Sensor
	microSD Card Slot
	Speaker and Speaker Connector
	I2C Connector
	Digital/Analog Connectors
	Status LED and NeoPixel
	USB Connector
	Reset Button

	What is CircuitPython?
	CircuitPython is based on Python
	Why would I use CircuitPython?

	CircuitPython
	Set up CircuitPython Quick Start!
	PyPortal Titano Default Files

	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.
	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing

	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!
	Back to Editing Code...

	Naming Your Program File
	Connecting to the Serial Console
	Are you using Mu?
	Serial Console Issues or Delays on Linux
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Entering the REPL
	Interacting with the REPL

	Returning to the Serial Console
	CircuitPython Libraries
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle
	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle
	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board
	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples

	CircuitPython Pins and Modules
	CircuitPython Pins
	import board
	I2C, SPI, and UART
	What Are All the Available Names?
	Microcontroller Pin Names

	CircuitPython Built-In Modules
	Frequently Asked Questions
	I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	How do I connect to the Internet with CircuitPython?
	Is there asyncio support in CircuitPython?
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	What is a MemoryError?
	MemoryError?"> What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Does CircuitPython support interrupts?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?
	Commonly Used Acronyms

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

	Bootloader (boardnameBOOT) Drive Not Present
	You may have a different board.
	MakeCode
	MacOS
	Windows 10
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear
	Device Errors or Problems on Windows
	Serial Console in Mu Not Displaying Anything
	CircuitPython RGB Status Light
	CircuitPython 7.0.0 and Later
	CircuitPython 6.3.0 and earlier

	Serial console showing ValueError: Incompatible .mpy file
	CIRCUITPY Drive Issues
	Safe Mode
	Entering Safe Mode in CircuitPython 7.x
	Entering Safe Mode in CircuitPython 6.x
	In Safe Mode

	To erase CIRCUITPY: storage.erase_filesystem()
	Erase CIRCUITPY Without Access to the REPL
	For the specific boards listed below:
	For SAMD21 non-Express boards that have a UF2 bootloader:
	For SAMD21 non-Express boards that do not have a UF2 bootloader:

	Running Out of File Space on SAMD21 Non-Express Boards
	Delete something!
	Use tabs
	On MacOS?
	Prevent & Remove MacOS Hidden Files
	Copy Files on MacOS Without Creating Hidden Files
	Other MacOS Space-Saving Tips

	Device Locked Up or Boot Looping
	"Uninstalling" CircuitPython
	Backup Your Code

	Moving Circuit Playground Express to MakeCode
	Moving to Arduino
	Welcome to the Community!
	Adafruit Discord
	CircuitPython.org
	Pull Requests
	Open Issues
	Library Infrastructure Issues
	CircuitPython Localization

	Adafruit GitHub
	Adafruit Forums
	Read the Docs

	PyPortal CircuitPython Setup
	Adafruit CircuitPython Bundle
	Internet Connect!
	What's a secrets file?
	Connect to WiFi
	Requests
	HTTP GET with Requests
	HTTP POST with Requests
	Advanced Requests Usage

	WiFi Manager
	Arduino IDE Setup
	https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

	Using with Arduino IDE
	Install SAMD Support
	Install Adafruit SAMD
	Install Drivers (Windows 7 & 8 Only)
	Blink
	Successful Upload
	Compilation Issues
	Manually bootloading
	Ubuntu & Linux Issue Fix
	Arduino Libraries
	Install Libraries
	Adafruit NeoPixel
	Adafruit SPIFlash
	Adafruit Zero DMA
	Adafruit GFX
	Adafruit ILI9341
	Adafruit HX8357
	Adafruit Touchscreen
	Analog Devices ADT7410
	WiFiNINA

	Adafruit ImageReader
	Arduino Test
	Updating ESP32 Firmware
	Parsing JSON
	Parsing JSON from the Web
	JSON

	Parsing local JSON files

	PyPortal Hardware FAQ
	The PyPortal screen is all white or blank when powered on.
	I'm using the STEMMA I2C connector to attach sensors and experiencing issues.
	I'm seeing "AT" or other text being inserted at the REPL prompt.
	What does the status NeoPixel indicate once my code.py is running?

	Downloads
	Files

	Schematic and Fab Print

