
Adafruit PiCowbell CAN Bus for Pico
Created by Liz Clark

https://learn.adafruit.com/adafruit-picowbell-can-bus-for-pico

Last updated on 2024-03-08 04:09:45 PM EST

©Adafruit Industries Page 1 of 30

3

7

11

12

14

17

20

23

23

29

29

Table of Contents

Overview

Pinouts
• Power
• I2C Logic
• Duplicate GPIO Hole Pads
• Reset Button
• Terminal Block Pins
• Terminator Jumper
• MCP2515 Reset Pin and Jumper
• Chip Select Pin and Jumper
• Interrupt Pin and Jumper
• Silent Mode Pin

Assembly

Pico
• Assembly Steps

Stacking Headers
• Assembly Steps

Socket Headers
• Assembly Steps

CircuitPython
• CircuitPython Usage
• Simple Test Example
• Testing with Two CAN Bus PiCowbells

Python Docs

Arduino
• Wiring
• Library Installation
• Example Send Code
• Example Receive Code

Arduino Docs

Downloads
• Files
• Schematic and Fab Print

©Adafruit Industries Page 2 of 30

Overview

Ding dong! Hear that? It's the PiCowbell ringing, letting you know that the new
Adafruit PiCowbell CAN Bus board is in stock and ready to assist your Raspberry Pi
Pico (http://adafru.it/4864) and Pico W (http://adafru.it/5526) project in connecting to
CAN bus networks for automotive or robotics projects.

CAN Bus is a small-scale networking standard (https://adafru.it/18Bb), originally
designed for cars and, yes, busses, but is now used for many robotics or sensor
networks that need better range and addressing than I2C and don't have the pins or
computational ability to talk on Ethernet. CAN is a 2 wire differential standard, which
means it's good for long distances and noisy environments.

©Adafruit Industries Page 3 of 30

https://www.adafruit.com/product/4864
https://www.adafruit.com/product/4864
https://www.adafruit.com/product/5526
https://en.wikipedia.org/wiki/CAN_bus

Messages are sent at about a 1 Mbps rate - you set the frequency for the bus and
then all 'joiners' must match it, and have an address before the packet so that each
node can listen in to messages just for it. New nodes can be attached easily because
they just need to connect to the two data lines anywhere in the shared net. Each CAN
device sends messages whenever it wants, and thanks to some clever data encoding,
can detect if there's a message collision and retransmit later.

If you'd like to connect your Raspberry Pi Pico to a CAN Bus, the Adafruit PiCowbell
CAN Bus board has a MCP2515 controller and TJA1051/3 transceiver! The controller
used is the MCP2515, an extremely popular and well-supported chipset (https://
adafru.it/18Be) that has drivers in Arduino and CircuitPython (https://adafru.it/18Bm)

©Adafruit Industries Page 4 of 30

https://www.microchip.com/en-us/product/MCP2515
https://www.microchip.com/en-us/product/MCP2515
https://github.com/adafruit/Adafruit_CircuitPython_MCP2515

and only requires an SPI port and two pins for chip-select and IRQ. Use it to send and
receive messages in either standard or extended format at up to 1 Mbps.

Adafruit has added a few nice extras to this PiCowBell to make it useful in many
common CAN scenarios:

5V charge-pump voltage generator (http://adafru.it/3661), so even though you
are running 3.3V on a Pico board, it will generate a nice clean 5V as required by
the transceiver.
3.5mm terminal block (http://adafru.it/725) pre-soldered on the board to get
quick access to the High and Low data lines as well as a ground pin.
120-ohm termination resistor on board, you can remove the termination easily
by cutting the jumper marked Term on the top of the board.
Pre-connected CS and INT pins on Pico GPIO #20 and #21. You can cut the
bottom solder jumpers and use the breakout pads to connect to any two IO pins
you like.

Each order comes with an assembled PCB and header. You will need to solder in the
header yourself, but it's a quick task.

•

•

•

•

©Adafruit Industries Page 5 of 30

https://www.adafruit.com/product/3661
https://www.adafruit.com/product/3661
https://www.adafruit.com/product/725

Please Note! There are a lot of possible configurations, and we stock various headers
depending on how you want to solder and attach. Especially if you want the Pico on
top so that the BOOTSEL button and LED are accessible.

Use the Pico Stacking Headers (http://adafru.it/5582) if you want to be able to
plug into a breadboard or other accessory with sockets.
Use the Pico Socket Headers (http://adafru.it/5583) if you want to plug directly in
and have a nice solid connection that doesn't have any poking-out-bits.

1.

2.

©Adafruit Industries Page 6 of 30

https://www.adafruit.com/product/5582
https://www.adafruit.com/product/5583

The PiCowbell CAN Bus provides you with:

Right angle JST SH connector for I2C / Stemma QT / Qwiic connection.
Provides 3V, GND, IO4 (SDA), and IO5 (SCL).
Reset button - Press to restart your program.
Every pad on the 'bell has a duplicate hole pad next to them for solder-
jumpering
The ground pads have white silkscreen rectangles for easy identification, plus
one long ground strip near the reset button.
Gold-plated pads for easy soldering.

If you are using the Philhower Arduino core, the Wire peripheral is already set up to
use GPIO4 and GPIO5, and SPI is default on GPIO16, GPIO18 and GPIO19. If you use
CircuitPython or MicroPython, you'll need to let the code know to look at 4+5 for
SDA+SCL pins, and configure the SPI port for SCK=18, MOSI=19 and MISO=16.

Pinouts

•

•
•

•

•

©Adafruit Industries Page 7 of 30

Power
VB (VBUS) - This is the micro-USB input voltage, connected to the micro-USB
port on the Raspberry Pi Pico. It is nominally 5V.
VS (VSYS) - This is the main system input voltage. It can range from 1.8V to 5.5V
and is used to generate the 3.3V needed for the RP2040 and the GPIO pins.
EN (3V3_EN) - This connects to the enable pin on the Raspberry Pi Pico, and is
pulled high (to VSYS) via a 100kΩ resistor.
3V - This is the 3.3V output from the Raspberry Pi Pico.
VR (ADC_VREF) - This is the ADC power supply and reference voltage. It is
generated on the Raspberry Pi Pico by filtering the 3.3V supply. It can be used
with an external reference when ADC performance is required.
G - This is the common ground for power and logic. All GND pins are
highlighted in white on the silk, with the exception of the ground pin for the
CAN Bus terminal block. It is labeled - (minus sign).

I2C Logic
SCL - I2C clock pin on the PiCowbell. It is connected to your microcontroller I2C
clock line, which is GPIO5 on the Pico. This connection is shared with the
STEMMA QT port on the end of the board.
SDA - I2C data pin on the PiCowbell. It is connected to your microcontroller I2C
data line, which is GPIO4 on the Pico. This connection is shared with the
STEMMA QT port on the end of the board.
STEMMA QT (https://adafru.it/Ft4) - These connectors allow you to connect to
dev boards with STEMMA QT connectors or to other things with various
associated accessories (https://adafru.it/JRA). The port is located on the end of
the PiCowbell.

•

•

•

•
•

•

•

•

•

©Adafruit Industries Page 8 of 30

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/category/619
https://www.adafruit.com/category/619

Duplicate GPIO Hole Pads

The following pads on the PiCowbell CAN Bus have a duplicate hole pad next to it for
solder-jumpering:

GP0-GP15, GP16-GP22, Reset, A0-A2, VR, 3V, EN, VS and VB. Ground pins that
have a duplicate hole pad are highlighted in white on the board silkscreen.

Note that GP20 and GP21 are connected by default to CAN Bus CS and
INT. They can be disconnected from these GPIO pins by cutting the CS
and INT jumpers described below.

Reset Button

In the center of the board, to the right of the STEMMA QT connector, is the reset
button. It is routed to the reset pin on the PiCowbell and is labeled RST on the board
silk. You can press it to restart your program.

Terminal Block Pins

On the front of the board is the terminal block with the three pins for communicating
with the CAN Bus standard.

L - the CAN low signal for the CAN Bus standard.
- - common ground shared between the two CAN connections
H - the CAN high signal for the CAN Bus standard.

Both L and H are connected to a 5V charge-pump voltage generator (http://adafru.it/
3661). Even if you are using 3.3V logic on a Pico board, it will generate a nice clean
5V as required by the CAN Bus transceiver.

•

◦

•
•
•

©Adafruit Industries Page 9 of 30

https://www.adafruit.com/product/3661
https://www.adafruit.com/product/3661

Terminator Jumper

The terminator jumper is located on the front of the board, to the left of the terminal
block. It is labeled Term and is outlined in white on the board silk.

Term - The board has a 120 ohm termination resistor connected between H and
L. You can disable (remove) the resistor by cutting the Term jumper, if your bus
is already terminated.

MCP2515 Reset Pin and Jumper
Reset Jumper - located on the back of the board, below the PiCowbell icon on
the board silk, is the reset jumper. It is outlined in white on the board silk. You
can cut this jumper to disconnect the MCP2515 reset pin from the Pico reset
pin.
Reset Pin - located on the front of the board to the right of the reset button. It is
labeled RST on the silk. If you cut the reset jumper, you can use this pin to
connect the MCP2515 reset pin to a different IO pin.

Chip Select Pin and Jumper
CS Jumper - located on the back of the board, next to PiCowbell pin 20, is the
chip select jumper. It is labeled CS and is outlined in white on the board silk. By
default, the MCP2515 chip select pin is connected to GPIO20 on the PiCowbell.
You can cut this jumper to disconnect the MCP2515 CS pin from PiCowbell pin
20.
CS pin - located on the front of the board to the right of the reset button. It is
labeled CS on the silk. If you cut the CS jumper, you can use this pin to connect
the MCP2515 CS pin to a different IO pin.

Interrupt Pin and Jumper
INT Jumper - located on the back of the board, next to PiCowbell pin 21, is the
interrupt jumper. It is labeled INT and is outlined in white on the board silk. By
default, the MCP2515 interrupt pin is connected to GPIO21 on the PiCowbell.
You can cut this jumper to disconnect the MCP2515 INT pin from PiCowbell pin
21.

•

•

•

•

•

•

©Adafruit Industries Page 10 of 30

INT pin - located on the front of the board to the right of the reset button. It is
labeled INT on the silk. If you cut the INT jumper, you can use this pin to
connect the MCP2515 INT pin to a different IO pin.

Silent Mode Pin
SLNT pin - located on the front of the board to the right of the reset button. It is
labeled SLNT on the silk. This pin can be pulled high to put the TJA1051/3
transceiver into silent mode. From the datasheet:

In Silent mode, the transmitter is disabled, releasing the bus pins to
recessive state. All other IC functions, including the receiver, continue to
operate as in Normal mode. Silent mode can be used to prevent a faulty
CAN controller from disrupting all network communications.

Assembly

There are four ways to get your PiCowbell board working with your Pico. To keep
things flexible, PiCowbells do not come with headers: there's a lot of possible
configurations and we stock various headers depending on how you want to solder
and attach. Especially since you want the Pico on top, so that the BOOTSEL button
and LED are accessible.

•

•

Although these pages show the PiCowbell Proto, the soldering instructions are
applicable for all PiCowbell boards.

©Adafruit Industries Page 11 of 30

The options are as follows.

Use the Pico Stacking Headers (http://adafru.it/5582) if you want to be able
to plug into a breadboard or other accessory with sockets.
Use the Pico Socket Headers (http://adafru.it/5583) if you want to plug directly
into the Pico and have a nice solid connection that doesn't have any poking-out-
bits.
For some PiCowbells: Use the Short Socket Headers (http://adafru.it/5585) for a
very slim but pluggable design, note that you'll want to trim down the Pico's
headers or use the short plug headers on the Pico (http://adafru.it/5584) to have
a skinny sandwich.
For some PiCowbells: Solder the PiCowbell directly to the standard headers
already soldered to your Pico. Of course this is very compact and inexpensive
but you won't be able to remove the PiCowbell. However, this method is not
possible for some PiCowbell variants depending on the clearance of the
components on the PiCowbell (i.e. the PiCowbell Adalogger and its coin cell
battery holder).

The next page shows how to solder standard headers onto a Pico board. The
following four pages walk you through each type of PiCowbell assembly so you can
choose the one that will work best for you!

If you're unsure about soldering up the Pico and PiCowbell, check out our FAQ on
soldering (https://adafru.it/18b9).

Pico
Three out of four of the assembly methods included in this guide assume you have a
Raspberry Pi Pico soldered up with standard male headers in preparation for using it
with the PiCowbell Proto. This page will show you how to solder a set of standard
headers to a Pico.

(The shorty header assembly method uses short male headers on the Pico. The
soldering concept is exactly the same, but use the shorty male headers on the Pico
instead of standard ones. You can follow these instructions with the shorty headers
and you'll be set for that.)

1.

2.

3.

4.

You MUST solder all of the pins for the PiCowbell to work! Soldering only a few
pins, or not soldering at all are not sufficient!

©Adafruit Industries Page 12 of 30

https://www.adafruit.com/product/5582
https://www.adafruit.com/product/5583
https://www.adafruit.com/product/5585
https://www.adafruit.com/product/5584
https://learn.adafruit.com/adafruit-guide-excellent-soldering/soldering-faq
https://learn.adafruit.com/adafruit-guide-excellent-soldering/soldering-faq

Follow the steps below to solder the standard male headers to a Pico. The process is
the same for all flavors of Pico, such as Pico W.

Assembly Steps

Use the Pico to line up the headers on a
breadboard. This is the easiest way to
ensure the headers are soldered on
straight.

Solder the pins on each end of the two
header strips, so the four corners of the
Pico are soldered. This ensures the Pico
and headers are attached properly while
you continue to solder the rest of the pins.

©Adafruit Industries Page 13 of 30

https://learn.adafruit.com//assets/116458
https://learn.adafruit.com//assets/116458
https://learn.adafruit.com//assets/116459
https://learn.adafruit.com//assets/116459
https://learn.adafruit.com//assets/116460
https://learn.adafruit.com//assets/116460

Solder the rest of the pins.

Remove it from the breadboard. You're
done!

For a bit more detail on the process of soldering standard male headers to a board,
check out the How to Solder Headers' Male Headers page (https://adafru.it/188C).

Stacking Headers
The first PiCowbell assembly method uses stacking headers, which allows you to use
a breadboard with your PiCowbell-Pico sandwich. This is super helpful when you're
still prototyping other parts of your project, or simply want jumper-wire access to the
Pico pins in addition to the PiCowbell.

This page assumes you have already soldered standard male headers to your Pico. If
you have not, please return to the Pico assembly page (https://adafru.it/18bQ) and
follow the steps there.

Follow the steps below to solder stacking headers to your PiCowbell.

Although these pages show the PiCowbell Proto, the soldering instructions are
applicable for all PiCowbell boards.

©Adafruit Industries Page 14 of 30

https://learn.adafruit.com//assets/116461
https://learn.adafruit.com//assets/116461
https://learn.adafruit.com//assets/116462
https://learn.adafruit.com//assets/116462
https://learn.adafruit.com/how-to-solder-headers/male-headers
https://learn.adafruit.com/picowbell-proto/pico

Assembly Steps

Place a standard-header-soldered Pico
upside down on the table, so the long side
of the header pins are facing up. Press the
female sockets of each stacking header
onto one of the rows of standard headers
attached to the Pico, until they are fully
attached.

Ensure the PiCowbell is oriented correctly
before beginning assembly. The
PiCowbell should be top-down, so that you
are looking at the bottom of the PiCowbell.
The STEMMA QT connector should be on
the same end as the Pico USB connector,
and the reset button should be on the
opposite end with the Pico debug pins.

The PiCowbell pins must match the pinout
on the Pico.

Remember, the pins are labeled on the bottom of the Pico. In this case, that works
well because they are labeled on both sides of the PiCowbell, allowing for direct
comparison before attaching the PiCowbell to the stacking header assembly.

Ensure the PiCowbell is oriented properly before beginning soldering! If you
solder it on upside down or backwards, it will not function properly!

©Adafruit Industries Page 15 of 30

https://learn.adafruit.com//assets/116469
https://learn.adafruit.com//assets/116469
https://learn.adafruit.com//assets/116470
https://learn.adafruit.com//assets/116470

Press the PiCowbell onto the male pins
sticking up from the stacking headers. You
may need to push the stacking header
pins in or out a bit to get the PiCowbell
attached.

With the stacking header male pins
sticking up, the bottom of the PiCowbell
should be facing up as well.

Solder the pins on each end of each
stacking header, so that the opposite four
corners of the PiCowbell are soldered on.

Solder the rest of the pins onto the
PiCowbell.

©Adafruit Industries Page 16 of 30

https://learn.adafruit.com//assets/116471
https://learn.adafruit.com//assets/116471
https://learn.adafruit.com//assets/116472
https://learn.adafruit.com//assets/116472
https://learn.adafruit.com//assets/116473
https://learn.adafruit.com//assets/116473

You're done! Now you can attach the
whole sandwich to a breadboard, have
access to the pins via the breadboard, and
still be able to use the PiCowbell as well.

Socket Headers
This PiCowbell assembly method uses female socket headers on the PiCowbell to
create a standalone sandwich when attached to a Pico with standard male headers.

This page assumes you have already soldered standard male headers to your Pico. If
you have not, please return to the Pico assembly page (https://adafru.it/18bQ) and
follow the steps there.

Follow the steps below to solder socket headers to your PiCowbell.

Although these pages show the PiCowbell Proto, the soldering instructions are
applicable for all PiCowbell boards.

©Adafruit Industries Page 17 of 30

https://learn.adafruit.com//assets/116474
https://learn.adafruit.com//assets/116474
https://learn.adafruit.com//assets/116475
https://learn.adafruit.com//assets/116475
https://learn.adafruit.com/picowbell-proto/pico

Assembly Steps

Place a standard-header-soldered Pico
upside down on the table, so the long side
of the header pins are facing up. Press the
female sockets onto one of the rows of
standard headers attached to the Pico,
until both are fully attached.

Ensure the PiCowbell is oriented correctly
before beginning assembly. The
PiCowbell should be top-down, so that you
are looking at the bottom of the Cowbell.
The STEMMA QT connector should be on
the same end as the Pico USB connector,
and the reset button should be on the
opposite end with the Pico debug pins.

The PiCowbell pins must match the pinout
on the Pico.

Remember, the pins are labeled on the bottom of the Pico. In this case, that works
well because they are labeled on both sides of the PiCowbell, allowing for direct
comparison before attaching the PiCowbell to the stacking header assembly.

©Adafruit Industries Page 18 of 30

https://learn.adafruit.com//assets/116476
https://learn.adafruit.com//assets/116476
https://learn.adafruit.com//assets/116477
https://learn.adafruit.com//assets/116477
https://learn.adafruit.com//assets/116478
https://learn.adafruit.com//assets/116478

Press the PiCowbell onto the pins sticking
up from the socket headers. You may need
to push the stacking header pins in or out
a bit to get the PiCowbell attached.

Solder the pins on each end of each
socket header, so that the opposite four
corners of the PiCowbell are soldered on.

Ensure the PiCowbell is oriented properly before beginning soldering! If you
solder it on upside down or backwards, it will not function properly!

©Adafruit Industries Page 19 of 30

https://learn.adafruit.com//assets/116479
https://learn.adafruit.com//assets/116479
https://learn.adafruit.com//assets/116480
https://learn.adafruit.com//assets/116480
https://learn.adafruit.com//assets/116481
https://learn.adafruit.com//assets/116481

Solder the rest of the pins onto the
PiCowbell.

That's it, you're done!

CircuitPython
It's easy to use the PiCowbell CAN Bus with CircuitPython and the
Adafruit_CircuitPython_MCP2515 (https://adafru.it/18Bm) module. This module allows
you to easily write Python code that lets you utilize the MCP2515 CAN bus controller.

CircuitPython Usage

To use with CircuitPython, you need to first install the MCP2515 library, and its
dependencies, into the lib folder onto your CIRCUITPY drive. Then you need to
update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file.

©Adafruit Industries Page 20 of 30

https://learn.adafruit.com//assets/116482
https://learn.adafruit.com//assets/116482
https://learn.adafruit.com//assets/116484
https://learn.adafruit.com//assets/116484
https://github.com/adafruit/Adafruit_CircuitPython_MCP2515

Connect your Feather board to your computer via a known good data+power USB
cable. The board should show up in your File Explorer/Finder (depending on your
operating system) as a flash drive named CIRCUITPY.

Extract the contents of the zip file, and copy the entire lib folder and the code.py file
to your CIRCUITPY drive.

Your CIRCUITPY/lib folder should contain the following folders:

adafruit_bus_device/
adafruit_mcp2515/

Simple Test Example

Once everything is saved to the CIRCUITPY drive, connect to the serial
console (https://adafru.it/Bec) to see the messages printed out!

SPDX-FileCopyrightText: Copyright (c) 2020 Bryan Siepert for Adafruit Industries
#
SPDX-License-Identifier: MIT
'''Simple Test for the PiCowbell CAN Bus with Raspberry Pi Pico'''

from time import sleep
import board
import busio
from digitalio import DigitalInOut
from adafruit_mcp2515.canio import Message, RemoteTransmissionRequest
from adafruit_mcp2515 import MCP2515 as CAN

cs = DigitalInOut(board.GP20)
cs.switch_to_output()
spi = busio.SPI(board.GP18, board.GP19, board.GP16)

can_bus = CAN(
spi, cs, loopback=True, silent=True

) # use loopback to test without another device
while True:

with can_bus.listen(timeout=1.0) as listener:

message = Message(id=0x1234ABCD, data=b"adafruit", extended=True)
send_success = can_bus.send(message)
print("Send success:", send_success)

•
•

©Adafruit Industries Page 21 of 30

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

message_count = listener.in_waiting()
print(message_count, "messages available")
for _i in range(message_count):

msg = listener.receive()
print("Message from ", hex(msg.id))
if isinstance(msg, Message):

print("message data:", msg.data)
if isinstance(msg, RemoteTransmissionRequest):

print("RTR length:", msg.length)
sleep(1)

In the code, the instantiation of can_bus sets loopback and silent to True . This
allows you to test the CAN Bus messaging without another CAN device.

can_bus = CAN(
spi, cs, loopback=True, silent=True

) # use loopback to test without another device

In the REPL, you'll see the byte array message be sent successfully every second.

Testing with Two CAN Bus PiCowbells

You can test with two CAN Bus PiCowbells by preparing two Raspberry Pi Pico boards
with two CAN Bus PiCowbells. Prepare two Raspberry Pi Pico boards with two
PiCowbell CAN Bus boards using your preferred header method described in the
Assembly pages (https://adafru.it/18DH).

©Adafruit Industries Page 22 of 30

https://learn.adafruit.com/adafruit-picowbell-can-bus-for-pico/assembly

Once you have two Pico boards
connected to CAN Bus PiCowbells, you
can connect the CAN signals:

PiCowbell A CANH terminal block to
PiCowbell B CANH terminal block (blue
wire)
PiCowbell A - (ground) terminal block to
PiCowbell B - (ground) terminal block
(black wire)
PiCowbell A CANL terminal block to
PiCowbell B CANL terminal block (yellow
wire)

Upload the Project Bundle to both CIRCUITPY drives. In the code, change the
can_bus instantiation on both Pico boards to have loopback and silent be
False .

can_bus = CAN(
spi, cs, loopback=False, silent=False

) # use loopback to test without another device

When you run the code on both Pico boards, you can check each serial monitor
window and see messages being exchanged between the two boards.

Python Docs
Python Docs (https://adafru.it/18Bp)

Arduino
Using the PiCowbell CAN Bus with Arduino involves wiring up the two PiCowbells to
two Raspberry Pi Picos, installing the Adafruit_MCP2515 (https://adafru.it/18Bs) library
and running the provided example code.

©Adafruit Industries Page 23 of 30

https://learn.adafruit.com//assets/120880
https://learn.adafruit.com//assets/120880
https://docs.circuitpython.org/projects/mcp2515/en/latest/
https://github.com/adafruit/Adafruit_MCP2515

Wiring

Since CAN bus is a two-way communication protocol, you'll need two devices talking
to each other over CAN. Prepare two Raspberry Pi Pico boards with two PiCowbell
CAN Bus boards using your preferred header method described in the Assembly
pages (https://adafru.it/18DH).

Once you have two Pico boards
connected to CAN Bus PiCowbells, you
can connect the CAN signals:

PiCowbell A CANH terminal block to
PiCowbell B CANH terminal block (blue
wire)
PiCowbell A - (ground) terminal block to
PiCowbell B - (ground) terminal block
(black wire)
PiCowbell A CANL terminal block to
PiCowbell B CANL terminal block (yellow
wire)

Library Installation

You can install the Adafruit MCP2515 library for Arduino using the Library Manager in
the Arduino IDE.

Click the Manage Libraries ... menu item, search for Adafruit MCP2515 and select the
Adafruit MCP2515 library:

©Adafruit Industries Page 24 of 30

https://learn.adafruit.com/adafruit-picowbell-can-bus-for-pico/assembly
https://learn.adafruit.com/adafruit-picowbell-can-bus-for-pico/assembly
https://learn.adafruit.com//assets/120881
https://learn.adafruit.com//assets/120881

If asked about dependencies for any of the libraries, click "Install all".

If the "Dependencies" window does not come up, then you already have the
dependencies installed.

Example Send Code

/*
 * Adafruit MCP2515 FeatherWing CAN Sender Example
 */

#include <Adafruit_MCP2515.h>

#ifdef ESP8266
#define CS_PIN 2

#elif defined(ESP32) && !defined(ARDUINO_ADAFRUIT_FEATHER_ESP32S2) && !
defined(ARDUINO_ADAFRUIT_FEATHER_ESP32S3)

#define CS_PIN 14
#elif defined(TEENSYDUINO)

#define CS_PIN 8
#elif defined(ARDUINO_STM32_FEATHER)

#define CS_PIN PC5

If the dependencies are already installed, you must make sure you update them
through the Arduino Library Manager before loading the example!

©Adafruit Industries Page 25 of 30

#elif defined(ARDUINO_NRF52832_FEATHER) /* BSP 0.6.5 and higher! */
#define CS_PIN 27

#elif defined(ARDUINO_MAX32620FTHR) || defined(ARDUINO_MAX32630FTHR)
#define CS_PIN P3_2

#elif defined(ARDUINO_ADAFRUIT_FEATHER_RP2040)
#define CS_PIN 7

#elif defined(ARDUINO_ADAFRUIT_FEATHER_RP2040_CAN)
#define CS_PIN PIN_CAN_CS

#elif defined(ARDUINO_RASPBERRY_PI_PICO) || defined(ARDUINO_RASPBERRY_PI_PICO_W) //
PiCowbell CAN Bus

#define CS_PIN 20
#else

// Anything else, defaults!
#define CS_PIN 5

#endif

// Set CAN bus baud rate
#define CAN_BAUDRATE (250000)

Adafruit_MCP2515 mcp(CS_PIN);

void setup() {
Serial.begin(115200);
while(!Serial) delay(10);

Serial.println("MCP2515 Sender test!");

if (!mcp.begin(CAN_BAUDRATE)) {
Serial.println("Error initializing MCP2515.");
while(1) delay(10);

}
Serial.println("MCP2515 chip found");

}

void loop() {
// send packet: id is 11 bits, packet can contain up to 8 bytes of data
Serial.print("Sending packet ... ");

mcp.beginPacket(0x12);
mcp.write('h');
mcp.write('e');
mcp.write('l');
mcp.write('l');
mcp.write('o');
mcp.endPacket();

Serial.println("done");

delay(1000);

// send extended packet: id is 29 bits, packet can contain up to 8 bytes of data
Serial.print("Sending extended packet ... ");

mcp.beginExtendedPacket(0xabcdef);
mcp.write('w');
mcp.write('o');
mcp.write('r');
mcp.write('l');
mcp.write('d');
mcp.endPacket();

Serial.println("done");

delay(1000);
}

©Adafruit Industries Page 26 of 30

Example Receive Code

/*
 * Adafruit MCP2515 FeatherWing CAN Receiver Example
 */

#include <Adafruit_MCP2515.h>

#ifdef ESP8266
#define CS_PIN 2

#elif defined(ESP32) && !defined(ARDUINO_ADAFRUIT_FEATHER_ESP32S2) && !
defined(ARDUINO_ADAFRUIT_FEATHER_ESP32S3)

#define CS_PIN 14
#elif defined(TEENSYDUINO)

#define CS_PIN 8
#elif defined(ARDUINO_STM32_FEATHER)

#define CS_PIN PC5
#elif defined(ARDUINO_NRF52832_FEATHER) /* BSP 0.6.5 and higher! */

#define CS_PIN 27
#elif defined(ARDUINO_MAX32620FTHR) || defined(ARDUINO_MAX32630FTHR)

#define CS_PIN P3_2
#elif defined(ARDUINO_ADAFRUIT_FEATHER_RP2040)

#define CS_PIN 7
#elif defined(ARDUINO_ADAFRUIT_FEATHER_RP2040_CAN)

#define CS_PIN PIN_CAN_CS
#elif defined(ARDUINO_RASPBERRY_PI_PICO) || defined(ARDUINO_RASPBERRY_PI_PICO_W) //
PiCowbell CAN Bus

#define CS_PIN 20
#else

// Anything else, defaults!
#define CS_PIN 5

#endif

// Set CAN bus baud rate
#define CAN_BAUDRATE (250000)

Adafruit_MCP2515 mcp(CS_PIN);

void setup() {
Serial.begin(115200);
while(!Serial) delay(10);

Serial.println("MCP2515 Receiver test!");

if (!mcp.begin(CAN_BAUDRATE)) {
Serial.println("Error initializing MCP2515.");
while(1) delay(10);

}
Serial.println("MCP2515 chip found");

}

void loop() {
// try to parse packet
int packetSize = mcp.parsePacket();

if (packetSize) {
// received a packet
Serial.print("Received ");

if (mcp.packetExtended()) {
Serial.print("extended ");

}

if (mcp.packetRtr()) {
// Remote transmission request, packet contains no data
Serial.print("RTR ");

©Adafruit Industries Page 27 of 30

}

Serial.print("packet with id 0x");
Serial.print(mcp.packetId(), HEX);

if (mcp.packetRtr()) {
Serial.print(" and requested length ");
Serial.println(mcp.packetDlc());

} else {
Serial.print(" and length ");
Serial.println(packetSize);

// only print packet data for non-RTR packets
while (mcp.available()) {

Serial.print((char)mcp.read());
}
Serial.println();

}

Serial.println();
}

}

Upload the Example Send Code to the first Pico and then upload the Example
Receive Code to the second Pico. When you open the Serial Monitor for the Pico
running the Send code, you'll see confirmations that packets have been sent.

When you open the Serial Monitor for the Pico running the Receive code, you'll see
the messages coming in via CAN.

©Adafruit Industries Page 28 of 30

Arduino Docs
Arduino Docs (https://adafru.it/18Bs)

Downloads
Files

MCP2515 Datasheet (https://adafru.it/18Bv)
TJA1051/3 Datasheet (https://adafru.it/18Bw)
EagleCAD PCB files on GitHub (https://adafru.it/18DI)
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/18DJ)

Schematic and Fab Print

Dimensions are in inches.

•
•
•
•

©Adafruit Industries Page 29 of 30

https://github.com/adafruit/Adafruit_MCP2515
https://cdn-learn.adafruit.com/assets/assets/000/119/530/original/MCP2515-Family-Data-Sheet-DS20001801K.pdf?1679491405
https://cdn-learn.adafruit.com/assets/assets/000/119/531/original/TJA1051.pdf?1679491410
https://cdn-learn.adafruit.com/assets/assets/000/119/531/original/TJA1051.pdf?1679491410
https://github.com/adafruit/Adafruit-PiCowbell-CAN-Bus-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20PiCowbell%20CAN%20Bus.fzpz

©Adafruit Industries Page 30 of 30

	Adafruit PiCowbell CAN Bus for Pico
	Table of Contents
	Overview
	Pinouts
	Assembly
	Pico
	Stacking Headers
	Socket Headers
	CircuitPython
	Python Docs
	Arduino
	Arduino Docs
	Downloads

	Overview
	Pinouts
	Power
	I2C Logic
	Duplicate GPIO Hole Pads
	Reset Button
	Terminal Block Pins
	Terminator Jumper
	MCP2515 Reset Pin and Jumper
	Chip Select Pin and Jumper
	Interrupt Pin and Jumper
	Silent Mode Pin

	Assembly
	Pico
	Assembly Steps

	Stacking Headers
	Assembly Steps

	Socket Headers
	Assembly Steps

	CircuitPython
	CircuitPython Usage
	Simple Test Example
	Testing with Two CAN Bus PiCowbells

	Python Docs
	Arduino
	Wiring
	Library Installation
	Example Send Code
	Example Receive Code

	Arduino Docs
	Downloads
	Files
	Schematic and Fab Print

