
Adafruit OLED FeatherWing
Created by lady ada

https://learn.adafruit.com/adafruit-oled-featherwing

Last updated on 2024-03-08 02:26:04 PM EST

©Adafruit Industries Page 1 of 28

3

5

8

11

15

19

20

26

27

Table of Contents

Overview

Pinouts
• Power Pins
• I2C Data Pins
• Optional Buttons
• Reset Button

Assembly
• Prepare the header strip:
• Add the FeatherWing:
• And Solder!

Arduino Code
• Install Arduino Libraries
• Run Example Code
• Do more!

CircuitPython Wiring
• Adafruit OLED FeatherWing
• Adafruit 128x32 I2C OLED Display
• Adafruit 128x32 SPI OLED Display
• Adafruit 0.96" 128x64 OLED Display STEMMA QT Version - I2C Wiring
• Adafruit 0.96" or 1.3" 128x64 OLED Display Original Version - I2C Wiring
• Adafruit 0.96" or 1.3" 128x64 OLED Display - SPI Wiring

CircuitPython Setup
• CircuitPython Installation of DisplayIO SSD1306 Library
• Code Example Additional Libraries

CircuitPython Usage
• I2C Initialization
• Example Code
• Where to go from here

Troubleshooting

Download
• Schematics
• Fabrication Print

©Adafruit Industries Page 2 of 28

Overview

A Feather board without ambition is a Feather board without FeatherWings! This is
the FeatherWing OLED: it adds a 128x32 monochrome OLED plus 3 user buttons to
any Feather main board. Using our Feather Stacking Headers (http://adafru.it/2830) or
Feather Female Headers (http://adafru.it/2886) you can connect a FeatherWing on top
of your Feather board and let the board take flight!

These displays are small, only about 1" diagonal, but very readable due to the high
contrast of an OLED display. This screen is made of 128x32 individual white OLED
pixels and because the display makes its own light, no backlight is required. This

©Adafruit Industries Page 3 of 28

https://www.adafruit.com/products/2830
http://www.adafruit.com/products/2886

reduces the power required to run the OLED and is why the display has such high
contrast; we really like this miniature display for its crispness! We also toss on a reset
button and three mini tactile buttons called A B and C so you can add a mini user
interface to your feather.

Tested works with all of our Feather boards. The OLED uses only the two I2C pins on
the Feather, and you can pretty much stack it with any other FeatherWing, even ones
that use I2C since that is a shared bus.

©Adafruit Industries Page 4 of 28

Pinouts

The OLED FeatherWing plugs into any Feather and adds a cute little display. To make
it as cross-platform compatible as possible, we use only I2C to control the display.
This is not as fast as SPI but it uses only two pins, can share the I2C bus and is fine
for the small 128x32 pixel OLED.

Power Pins

OLED displays do not have a backlight, and are fairly low power, this display will draw
about 10mA when in use. The display uses 3V power and logic so we just connect to
the 3V and GND pins from the feather, as indicated above.

©Adafruit Industries Page 5 of 28

I2C Data Pins

The cute little OLED does all of the data transfer over the I2C pins, highlighed above
SDA and SCL. No other pins are required. There are two 2.2K pullups to 3V on each.

These pins can be shared with other I2C devices.

The I2C address is 0x3C and cannot be changed

Optional Buttons

We had a little bit of space so we added three mini tactile buttons that you can use for
user interface. We label them A B and C because each Feather has slightly different
pin numbering schemes and we wanted to make it 'universal'

If you're using ATmega328P, Atmega32u4, ATSAMD51 M4 or ATSAMD21 M0 Feather

Button A is #9 (note this is also used for the battery voltage divider so if you
want to use both make sure you disable the pullup when you analog read, then

•

©Adafruit Industries Page 6 of 28

turn on the pullup for button reads)
Button B is #6
Button C is #5

If you're using ESP8266:

Button A is #0
Button B is #16
Button C is #2

If you're using WICED/STM32 Feather

Button A is #PA15
Button B is #PC7
Button C is #PC5

Button B has a 100K pullup on it so it will work with the ESP8266 (which does not
have an internal pullup available on that pin). You will need to set up a pullup on all
other pins for the buttons to work.

Reset Button

Sometimes its nice to be able to restart your program, so we also have a reset button.
It is tied to the RST pin marked above.

•
•

•
•
•

•
•
•

©Adafruit Industries Page 7 of 28

Assembly

Prepare the header strip:
Cut the strip to length if necessary. It will
be easier to solder if you insert it into a
breadboard - long pins down

Add the FeatherWing:
Place the featherwing over the pins so that
the short pins poke through the two rows
of breakout pads

©Adafruit Industries Page 8 of 28

https://learn.adafruit.com//assets/33764
https://learn.adafruit.com//assets/33764
https://learn.adafruit.com//assets/33766
https://learn.adafruit.com//assets/33766

And Solder!
Be sure to solder all pins for reliable
electrical contact.

(For tips on soldering, be sure to check out
our Guide to Excellent Soldering (https://
adafru.it/aTk)).

Start by soldering the first row of header

©Adafruit Industries Page 9 of 28

https://learn.adafruit.com//assets/33767
https://learn.adafruit.com//assets/33767
https://learn.adafruit.com//assets/33768
https://learn.adafruit.com//assets/33768
https://learn.adafruit.com//assets/33769
https://learn.adafruit.com//assets/33769
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering

Now flip around and solder the other row
completely

©Adafruit Industries Page 10 of 28

https://learn.adafruit.com//assets/33770
https://learn.adafruit.com//assets/33770
https://learn.adafruit.com//assets/33771
https://learn.adafruit.com//assets/33771
https://learn.adafruit.com//assets/33772
https://learn.adafruit.com//assets/33772
https://learn.adafruit.com//assets/33773
https://learn.adafruit.com//assets/33773

You're done with the two header strips.

Check your solder joints visually and
continue onto the next steps

OK You're done! You can now plug your
FeatherWing into your Feather and get
your OLED on!

Arduino Code

The OLED display we use is well supported and works for all Feathers, all you need is
a little library support and you will be drawing in no time!

©Adafruit Industries Page 11 of 28

https://learn.adafruit.com//assets/33774
https://learn.adafruit.com//assets/33774
https://learn.adafruit.com//assets/33775
https://learn.adafruit.com//assets/33775

Install Arduino Libraries
Using the OLED FeatherWing with Arduino sketches requires that two libraries be
installed: Adafruit_SSD1306, which handles the low-level communication with the
hardware, and Adafruit_GFX, which builds atop this to add graphics functions like
lines, circles and text.

Open up the library manager:

Search for the Adafruit SSD1306 library and install it

Search for the Adafruit GFX library and install it

If using an earlier version of the Arduino IDE (prior to 1.8.10), also locate and install
Adafruit_BusIO (newer versions will install this dependency automatically).

We also have a great tutorial on Arduino library installation here:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://
adafru.it/aYM)

©Adafruit Industries Page 12 of 28

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Run Example Code
We have a basic demo that works with all Feathers, so compile/upload this sketch:

#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>

// OLED FeatherWing buttons map to different pins depending on board.
// The I2C (Wire) bus may also be different.
#if defined(ESP8266)

#define BUTTON_A 0
#define BUTTON_B 16
#define BUTTON_C 2
#define WIRE Wire

#elif defined(ESP32)
#define BUTTON_A 15
#define BUTTON_B 32
#define BUTTON_C 14
#define WIRE Wire

#elif defined(ARDUINO_STM32_FEATHER)
#define BUTTON_A PA15
#define BUTTON_B PC7
#define BUTTON_C PC5
#define WIRE Wire

#elif defined(TEENSYDUINO)
#define BUTTON_A 4
#define BUTTON_B 3
#define BUTTON_C 8
#define WIRE Wire

#elif defined(ARDUINO_FEATHER52832)
#define BUTTON_A 31
#define BUTTON_B 30
#define BUTTON_C 27
#define WIRE Wire

#elif defined(ARDUINO_ADAFRUIT_FEATHER_RP2040)
#define BUTTON_A 9
#define BUTTON_B 8
#define BUTTON_C 7
#define WIRE Wire1

#else // 32u4, M0, M4, nrf52840 and 328p
#define BUTTON_A 9
#define BUTTON_B 6
#define BUTTON_C 5
#define WIRE Wire

#endif

Adafruit_SSD1306 display = Adafruit_SSD1306(128, 32, &WIRE);

void setup() {
Serial.begin(9600);

Serial.println("OLED FeatherWing test");
// SSD1306_SWITCHCAPVCC = generate display voltage from 3.3V internally
display.begin(SSD1306_SWITCHCAPVCC, 0x3C); // Address 0x3C for 128x32

Serial.println("OLED begun");

// Show image buffer on the display hardware.
// Since the buffer is intialized with an Adafruit splashscreen
// internally, this will display the splashscreen.
display.display();
delay(1000);

©Adafruit Industries Page 13 of 28

// Clear the buffer.
display.clearDisplay();
display.display();

Serial.println("IO test");

pinMode(BUTTON_A, INPUT_PULLUP);
pinMode(BUTTON_B, INPUT_PULLUP);
pinMode(BUTTON_C, INPUT_PULLUP);

// text display tests
display.setTextSize(1);
display.setTextColor(SSD1306_WHITE);
display.setCursor(0,0);
display.print("Connecting to SSID\n'adafruit':");
display.print("connected!");
display.println("IP: 10.0.1.23");
display.println("Sending val #0");
display.setCursor(0,0);
display.display(); // actually display all of the above

}

void loop() {
if(!digitalRead(BUTTON_A)) display.print("A");
if(!digitalRead(BUTTON_B)) display.print("B");
if(!digitalRead(BUTTON_C)) display.print("C");
delay(10);
yield();
display.display();

}

You should see the OLED display a splash screen then spit out some text (it’s a make-
believe WiFi connection status screen…this doesn’t actually do anything, just showing
how typical project might look). If you press the A B or C buttons it will also print
those out.

©Adafruit Industries Page 14 of 28

Do more!
You can use any of the Adafruit GFX library commands to draw onto your OLED, that
means that you get all sorts of shapes, fonts, lines, etc available. Check out GFX for
all the underlying graphics support functions and how they work (https://adafru.it/doL)

Remember you need to call display() after drawing to refresh the screen!

CircuitPython Wiring
It's easy to use OLEDs with CircuitPython and the Adafruit CircuitPython DisplayIO
SSD1306 (https://adafru.it/FRA) module. This module allows you to easily write
CircuitPython code to control the display.

You can use this sensor with any CircuitPython microcontroller board.

We'll cover how to wire the OLED to your CircuitPython microcontroller board. First
assemble your OLED.

Connect the OLED to your microcontroller board as shown below.

Adafruit OLED FeatherWing

Solder the Feather with female headers
on top or stacking headers.
Attach the OLED FeatherWing using the
stacking method.

©Adafruit Industries Page 15 of 28

file:///home/adafruit-gfx-graphics-library
file:///home/adafruit-gfx-graphics-library
https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1306
https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1306
https://learn.adafruit.com//assets/68585
https://learn.adafruit.com//assets/68585

Adafruit 128x32 I2C OLED Display

Microcontroller 3V to OLED VIN
Microcontroller GND to OLED GND
Microcontroller SCL to OLED SCL
Microcontroller SDA to OLED SDA
Microcontroller D9 to OLED RST

Adafruit 128x32 SPI OLED Display

Microcontroller 3V to OLED VIN
Microcontroller GND to OLED GND
Microcontroller SCK to OLED CLK
Microcontroller MOSI to OLED Data
Microcontroller D5 to OLED CS
Microcontroller D6 to OLED D/C
Microcontroller D9 to OLED RST

©Adafruit Industries Page 16 of 28

https://learn.adafruit.com//assets/68726
https://learn.adafruit.com//assets/68726
https://learn.adafruit.com//assets/68727
https://learn.adafruit.com//assets/68727

Adafruit 0.96" 128x64 OLED Display STEMMA QT Version
- I2C Wiring

You do not need to alter the jumpers on
the back - I2C is the default configuration
on this display!

Microcontroller 3V to OLED Vin
Microcontroller GND to OLED Gnd
Microcontroller SCL to OLED Clk
Microcontroller SDA to OLED Data
Note: Connecting the OLED RST is not
necessary as this revision added auto-
reset circuitry so the RESET pin is not
required.

Adafruit 0.96" or 1.3" 128x64 OLED Display Original
Version - I2C Wiring

Check that the two jumpers are CLOSED on the back of the display to use with
I2C

©Adafruit Industries Page 17 of 28

https://learn.adafruit.com//assets/93882
https://learn.adafruit.com//assets/93882

Microcontroller 3V to OLED Vin
Microcontroller GND to OLED Gnd
Microcontroller SCL to OLED Clk
Microcontroller SDA to OLED Data
Microcontroller D9 to OLED Rst

©Adafruit Industries Page 18 of 28

https://learn.adafruit.com//assets/68737
https://learn.adafruit.com//assets/68737
https://learn.adafruit.com//assets/68738
https://learn.adafruit.com//assets/68738
https://learn.adafruit.com//assets/68755
https://learn.adafruit.com//assets/68755
https://learn.adafruit.com//assets/68756
https://learn.adafruit.com//assets/68756

Adafruit 0.96" or 1.3" 128x64 OLED Display - SPI Wiring

Microcontroller 3V to OLED Vin
Microcontroller GND to OLED Gnd
Microcontroller SCK to OLED Clk
Microcontroller MOSI to OLED Data
Microcontroller D5 to OLED CS
Microcontroller D6 to OLED DC
Microcontroller D9 to OLED Rst

CircuitPython Setup

CircuitPython Installation of DisplayIO
SSD1306 Library

To use the SSD1306 OLED with your Adafruit CircuitPython board you'll need to install
the Adafruit CircuitPython DisplayIO SSD1306 (https://adafru.it/FRA) module on your
board.

Check that the two jumpers are OPEN on the back of the display to use with SPI

Note that there is a non-displayio driver available as well and you want the
displayio version.

©Adafruit Industries Page 19 of 28

https://learn.adafruit.com//assets/68740
https://learn.adafruit.com//assets/68740
https://learn.adafruit.com//assets/68754
https://learn.adafruit.com//assets/68754
https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1306

First make sure you are running the latest version 5.0 or later of Adafruit
CircuitPython (https://adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow
the steps to find and install these libraries from Adafruit's CircuitPython library
bundle (https://adafru.it/uap). Our CircuitPython starter guide has a great page on
how to install the library bundle (https://adafru.it/ABU).

If you choose, you can manually install the libraries individually on your board:

adafruit_displayio_ssd1306
adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the
adafruit_displayio_ssd1306.mpy and adafruit_bus_device files and folders copied
over.

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the
CircuitPython >>> prompt.

Code Example Additional Libraries

For the Code Example, you will need an additional library. We decided to make use of
a library so the code didn't get overly complicated.

Adafruit_CircuitPython_Display_Text
https://adafru.it/FRB

Go ahead and install this in the same manner as the driver library by copying
the adafruit_display_text folder over to the lib folder on your CircuitPython device.

CircuitPython Usage

You must be using CircuitPython 5 or later for this to work!

•
•

Displayio is only available on express board due to the smaller memory size on
non-express boards.

©Adafruit Industries Page 20 of 28

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://github.com/adafruit/Adafruit_CircuitPython_Display_Text/releases

It's easy to use OLEDs with Python and the Adafruit CircuitPython DisplayIO
SSD1306 (https://adafru.it/FRA) module. This module allows you to easily write Python
code to control the display.

To demonstrate the usage, we'll initialize the library and use Python code to control
the OLED from the board's Python REPL.

I2C Initialization
If your display is connected to the board using I2C (like if using a Feather and the
FeatherWing OLED) you'll first need to initialize the I2C bus. First import the
necessary modules:

import board

Now for either board run this command to create the I2C instance using the default
SCL and SDA pins (which will be marked on the boards pins if using a Feather or
similar Adafruit board):

i2c = board.I2C()

After initializing the I2C interface for your firmware as described above, you can
create an instance of the I2CDisplay bus:

import displayio
import adafruit_displayio_ssd1306
display_bus = displayio.I2CDisplay(i2c, device_address=0x3c)

Finally, you can pass the display_bus in and create an instance of the SSD1306 I2C
driver by running:

display = adafruit_displayio_ssd1306.SSD1306(display_bus, width=128, height=32)

Now you should be seeing an image of the REPL. Note that the last two parameters to
the SSD1306 class initializer are the width and height of the display in pixels. Be
sure to use the right values for the display you're using!

display_bus = displayio.I2CDisplay(i2c, device_address=0x3c, reset=board.D9)

At this point the I2C bus and display are initialized.

©Adafruit Industries Page 21 of 28

https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1306
https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1306

Example Code
SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This test will initialize the display using displayio and draw a solid white
background, a smaller black rectangle, and some white text.
"""

import board
import displayio
import terminalio
from adafruit_display_text import label
import adafruit_displayio_ssd1306

displayio.release_displays()

i2c = board.I2C() # uses board.SCL and board.SDA
i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a
microcontroller
display_bus = displayio.I2CDisplay(i2c, device_address=0x3C)
display = adafruit_displayio_ssd1306.SSD1306(display_bus, width=128, height=32)

Make the display context
splash = displayio.Group()
display.root_group = splash

color_bitmap = displayio.Bitmap(128, 32, 1)
color_palette = displayio.Palette(1)
color_palette[0] = 0xFFFFFF # White

bg_sprite = displayio.TileGrid(color_bitmap, pixel_shader=color_palette, x=0, y=0)
splash.append(bg_sprite)

Draw a smaller inner rectangle
inner_bitmap = displayio.Bitmap(118, 24, 1)
inner_palette = displayio.Palette(1)
inner_palette[0] = 0x000000 # Black
inner_sprite = displayio.TileGrid(inner_bitmap, pixel_shader=inner_palette, x=5,
y=4)
splash.append(inner_sprite)

Draw a label
text = "Hello World!"
text_area = label.Label(terminalio.FONT, text=text, color=0xFFFF00, x=28, y=15)
splash.append(text_area)

while True:
pass

Let's take a look at the sections of code one by one. We start by importing the board
so that we can initialize SPI , displayio , terminalio for the font, a label , and
the adafruit_displayio_ssd1306 driver.

import board
import displayio
import terminalio
from adafruit_display_text import label
import adafruit_displayio_ssd1306

©Adafruit Industries Page 22 of 28

Next we release any previously used displays. This is important because if the
microprocessor is reset, the display pins are not automatically released and this
makes them available for use again.

displayio.release_displays()

The FeatherWing uses I2C, so we set the I2C object to the board's I2C with the easy
shortcut function board.I2C() . By using this function, it finds the SPI module and
initializes using the default SPI parameters. We also set the display bus to I2CDisplay
which makes use of the I2C bus.

Use for I2C
i2c = board.I2C()
display_bus = displayio.I2CDisplay(i2c, device_address=0x3c)

Finally, we initialize the driver with a width of the 128 variable and a height of the 32
variable. If we stopped at this point and ran the code, we would have a terminal that
we could type at and have the screen update.

display = adafruit_displayio_ssd1306.SSD1306(display_bus, width=128, height=32)

Next we create a background splash image. We do this by creating a group that we
can add elements to and adding that group to the display. In this example, we are
limiting the maximum number of elements to 10, but this can be increased if you
would like. The display will automatically handle updating the group.

splash = displayio.Group(max_size=10)
display.show(splash)

©Adafruit Industries Page 23 of 28

Next we create a Bitmap that is the full width and height of the display. The Bitmap is
like a canvas that we can draw on. In this case we are creating the Bitmap to be the
same size as the screen, but only have one color. Although the Bitmaps can handle
up to 256 different colors, the display is monochrome so we only need one. We
create a Palette with one color and set that color to 0xFFFFFF which happens to be
white. If were to place a different color here, displayio handles color conversion
automatically, so it may end up black or white depending on the calculation.

color_bitmap = displayio.Bitmap(128, 32, 1)
color_palette = displayio.Palette(1)
color_palette[0] = 0xFFFFFF # White

With all those pieces in place, we create a TileGrid by passing the bitmap and palette
and draw it at (0, 0) which represents the display's upper left.

bg_sprite = displayio.TileGrid(color_bitmap,
 pixel_shader=color_palette,
 x=0, y=0)
splash.append(bg_sprite)

Next we will create a smaller black rectangle. The easiest way to do this is the create
a new bitmap that is a little smaller than the full screen with a single color of
0x000000 , which is black, and place it in a specific location. In this case, we will
create a bitmap that is 5 pixels smaller on each side. The screen we're using here is
128x32 and we have the border set to 5 , so we'll want to subtract 10 from each of
those numbers.

We'll also want to place it at the position (5, 5) so that it ends up centered.

©Adafruit Industries Page 24 of 28

inner_bitmap = displayio.Bitmap(118, 24, 1)
inner_palette = displayio.Palette(1)
inner_palette[0] = 0x000000 # Black
inner_sprite = displayio.TileGrid(inner_bitmap,
 pixel_shader=inner_palette,
 x=5, y=4)
splash.append(inner_sprite)

Since we are adding this after the first square, it's automatically drawn on top. Here's
what it looks like now.

Next add a label that says "Hello World!" on top of that. We're going to use the built-in
Terminal Font. In this example, we won't be doing any scaling because of the small
resolution, so we'll add the label directly the main group. If we were scaling, we would
have used a subgroup.

Labels are centered vertically, so we'll place it at half the heigh for the Y coordinate
and subtract one so it looks good. We'll set the width to around 28 pixels make it
appear to be centered horizontally, but if you want to change the text, change this to
whatever looks good to you. Let's go with some white text, so we'll pass it a value of
0xFFFFFF .

text = "Hello World!"
text_area = label.Label(terminalio.FONT, text=text, color=0xFFFF00, x=28, y=15)
splash.append(text_area)

Finally, we place an infinite loop at the end so that the graphics screen remains in
place and isn't replaced by a terminal.

©Adafruit Industries Page 25 of 28

while True:
 pass

Where to go from here

Be sure to check out this excellent guide to CircuitPython Display Support Using
displayio (https://adafru.it/EGh)

Troubleshooting
Display does not work on initial power but does work
after a reset.

The OLED driver circuit needs a small amount of time to be ready after initial
power. If your code tries to write to the display too soon, it may not be ready. It will
work on reset since that typically does not cycle power. If you are having this issue,
try adding a small amount of delay before trying to write to the OLED.

In Arduino, use delay() to add a few milliseconds before calling oled.begin(). Adjust
the amount of delay as needed to see how little you can get away with for your
specific setup.

©Adafruit Industries Page 26 of 28

https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://learn.adafruit.com/circuitpython-display-support-using-displayio

Display is showing burn in on some pixels.
The display can have image burn in for any pixels left on over a long period of time
- many days. Try to avoid having the display on constantly for that length of time.

Download
SSD1306 (https://adafru.it/aJK) Datasheet
OLED UG-2832HSWEG02 Datasheet (https://adafru.it/qrf)
PCB Files in EagleCAD format (https://adafru.it/nbc)
Fritzing object available in the Adafruit Fritzing Library (https://adafru.it/aP3)

Schematics

Fabrication Print
Dimensions in inches

•
•
•
•

©Adafruit Industries Page 27 of 28

http://www.adafruit.com/datasheets/SSD1306.pdf
https://cdn-shop.adafruit.com/datasheets/UG-2832HSWEG02.pdf
https://github.com/adafruit/Adafruit-OLED-FeatherWing-PCB
https://github.com/adafruit/Fritzing-Library

©Adafruit Industries Page 28 of 28

	Adafruit OLED FeatherWing
	Table of Contents
	Overview
	Pinouts
	Assembly
	Arduino Code
	CircuitPython Wiring
	CircuitPython Setup
	CircuitPython Usage
	Troubleshooting
	Download

	Overview
	Pinouts
	Power Pins
	I2C Data Pins
	Optional Buttons
	Reset Button
	Assembly
	Prepare the header strip:
	Add the FeatherWing:
	And Solder!

	Arduino Code
	Install Arduino Libraries
	Run Example Code
	Do more!
	CircuitPython Wiring
	Adafruit OLED FeatherWing
	Adafruit 128x32 I2C OLED Display
	Adafruit 128x32 SPI OLED Display
	Adafruit 0.96" 128x64 OLED Display STEMMA QT Version - I2C Wiring
	Adafruit 0.96" or 1.3" 128x64 OLED Display Original Version - I2C Wiring
	Adafruit 0.96" or 1.3" 128x64 OLED Display - SPI Wiring

	CircuitPython Setup
	CircuitPython Installation of DisplayIO SSD1306 Library
	Code Example Additional Libraries

	CircuitPython Usage
	I2C Initialization
	Example Code
	Where to go from here

	Troubleshooting
	Display does not work on initial power but does work after a reset.
	Display is showing burn in on some pixels.

	Download
	Schematics
	Fabrication Print

