

Adafruit MAX98357 I2S Class-D Mono

Amp

Created by lady ada

https://learn.adafruit.com/adafruit-max98357-i2s-class-d-mono-amp

Last updated on 2023-08-29 03:09:57 PM EDT

©Adafruit Industries Page 1 of 45

5

7

12

16

17

24

27

31

33

36

Table of Contents

Overview

Pinouts

• Speaker Output

• Power Pins

• I2S Pins

• Other Pins

• Gain

• SD / MODE

Assembly

• Prepare the header strip:

• Add the breakout board:

• And Solder!

Raspberry Pi Wiring

Raspberry Pi Setup

• Fast Install

• Detailed Install

• Update /etc/modprobe.d (if it exists)

• Disable headphone audio (if it's set)

• Create asound.conf file

• Add Device Tree Overlay

Raspberry Pi Test

• Speaker Tests!

• Simple white noise speaker test

• Simple WAV speaker test

• Simple MP3 speaker test

• Volume adjustment

Pi I2S Tweaks

• Reducing popping

• Step 1

• Add software volume control

Play Audio with PyGame

• Install PyGame

• Run Demo

Arduino Wiring & Test

• Wiring

• Basic Test

• DMA Test

CircuitPython Wiring & Test

• Wiring

• Code Examples

• Tone Generation

• Wave File

©Adafruit Industries Page 2 of 45

43

44

• Where's my I2S?

I2S Audio FAQ

Downloads

• Schematic

• Fabrication Print

• 3D Model

©Adafruit Industries Page 3 of 45

©Adafruit Industries Page 4 of 45

Overview

If your microcontroller or microcomputer has digital audio capability, this amp is for

you! It takes standard I2S digital audio input and, not only decodes it into analog, but

also amplifies it directly into a speaker. Perfect for adding compact amplified sound, it

takes 2 breakouts (I2S DAC + Amp) and combines them into one.

I2S (not to be confused with I2C) is a digital sound protocol that is used on circuit

boards to pass audio data around. Many high end chips and processors manage all of

the audio in digital I2S format. Then, to input or output data, three or four pins are

used (data in, data out, bit clock and left-right channel select). Usually, for audio

devices, there's a DAC chip that will take I2S in and convert it to analog that can drive

a headphone.

This small mono amplifier is surprisingly powerful - able to deliver 3.2 Watts of power

into a 4 ohm impedance speaker (5V power @ 10% THD). Inside the miniature chip is a

class D controller, able to run from 2.7V-5.5VDC. Since the amp is a class D, it's

incredibly efficient - making it perfect for portable and battery-powered projects. It

has built in thermal and over-current protection but we could barely tell it got hot.

The audio input is I2S standard, you can use 3.3V or 5V logic data. The outputs are

"Bridge Tied" - that means they connect directly to the outputs, no connection to

ground. The output is a ~300KHz square wave PWM that is then 'averaged out' by the

speaker coil - the high frequencies are not heard. All the above means that you can't

connect the output into another amplifier, it should drive the speakers directly.

©Adafruit Industries Page 5 of 45

There's a Gain pin that can be manipulated to change the gain. By default, the amp

will give you 9dB of gain. By connecting a pullup or pull down resistor, or wiring

directly, the Gain pin can be set up to give 3dB, 6dB, 9dB, 12dB or 15dB.

the ShutDown/Mode pin can be used to put the chip in shutdown or set up which I2S

audio channel is piped to the speaker. By default, the amp will output (L+R)/2 stereo

mix into mono out. By adding a resistor, you can change it to be just left or just right

output

Works great with Raspberry Pi, Arduino Zero, and any other microcontroller or

microcomputer with I2S audio outputs

 Specs:

Output Power: 3.2W at 4Ω, 10% THD, 1.8W at 8Ω, 10% THD, with 5V supply

PSRR: 77 dB typ @ 1KHz

I2S sample rates from 8kHz to 96kHz

No MCLK required

Click + Pop reduction

Five pin-selectable gains: 3dB, 6dB, 9dB, 12dB, 15dB

Excellent click-and-pop suppression

Thermal shutdown protection

•

•

•

•

•

•

•

•

©Adafruit Industries Page 6 of 45

Comes as an assembled and tested breakout board, with a small piece of optional

header and 3.5mm terminal block. Some soldering is required to attach the header

and terminal block if those are desired.

Pinouts

The MAX98357A is an I2S amplifier - it does not use analog inputs, it only has digital

audio input support! Don't confuse I2S with I2C, I2S is a sound protocol whereas I2C

is for small amounts of data.

©Adafruit Industries Page 7 of 45

Speaker Output

This amplifier is designed to drive moving coil loudpeakers only. Speaker impedence

must be 4Ω or more. The output signal is a 330KHz PWM square wave with a duty

cycle proportional to the audio signal. The inductance of the speaker coil serves as a

low-pass filter to average out the high-frequency components. Do not try to use this

as a pre-amplifier.

The outputs of each channel are "Bridge-Tied" with no connection to ground. This

means that for each channels, the + and - alternate polarity to create a single channel

amplifier with twice the available power.

Connect your speakers using the 3.5mm screw-terminal blocks.

5V into 4Ω @ 10% THD - 3W max

5V into 4Ω @ 1% THD - 2.5W max

3.3V into 4Ω @ 10% THD - 1.3W max

3.3V into 4Ω @ 1% THD - 1.0W max

5V into 8Ω @ 10% THD - 1.8W max

5V into 8Ω @ 1% THD - 1.4W max

3.3V into 8Ω @ 10% THD - 0.8W max

3.3V into 8Ω @ 1% THD - 0.6W max

•

•

•

•

•

•

•

•

©Adafruit Industries Page 8 of 45

Power Pins

This is the power for the amplifier and logic of the amplifier. You can provide 2.5V up

to 5.5V. Note that at 5V you can end up putting up to 2.8W into your speaker, so

make sure your power supply can easily handle up to 650mA and we recommend a

power supply spec'd for at least 800mA to give yourself some 'room'

If you have a 3.3V logic device, you can still power the amp from 5V, and that's

recommended to get the most power output!

©Adafruit Industries Page 9 of 45

I2S Pins

Three pins are used to receive audio data. These can be 3.3-5V logic

LRC (Left/Right Clock) - this is the pin that tells the amplifier when the data is for

the left channel and when its for the right channel

BCLK (Bit Clock) - This is the pin that tells the amplifier when to read data on the

data pin.

DIN (Data In) - This is the pin that has the actual data coming in, both left and

right data are sent on this pin, the LRC pin indicates when left or right is being

transmitted

Note that this amplifier does not require an MCLK pin, if you have an MCLK output,

you can leave it disconnected!

•

•

•

©Adafruit Industries Page 10 of 45

Other Pins

The other settings are handled by GAIN and SD

Gain

GAIN is, well, the gain setting. You can have a gain of 3dB, 6dB, 9dB, 12dB or 15dB.

15dB if a 100K resistor is connected between GAIN and GND

12dB if GAIN is connected directly to GND

9dB if GAIN is not connected to anything (this is the default)

6dB if GAIN is connected directly to Vin

3dB if a 100K resistor is connected between GAIN and Vin

This way, the default gain is 9dB but you can easily change it by tweaking the

connection to the GAIN pin. Note you may need to perform a power reset to adjust

the gain.

•

•

•

•

•

©Adafruit Industries Page 11 of 45

SD / MODE

This pin is used for shutdown mode but is also used for setting which channel is

output. It's a little confusing but essentially:

If SD is connected to ground directly (voltage is under 0.16V) then the amp is shu

t down

If the voltage on SD is between 0.16V and 0.77V then the output is (Left + Right)/

2, that is the stereo average.

If the voltage on SD is between 0.77V and 1.4V then the output is just the Right

channel

If the voltage on SD is higher than 1.4V then the output is the Left channel.

This is compounded by an internal 100K pulldown resistor on SD so you need to use a

pullup resistor on SD to balance out the 100K internal pulldown.

For the breakout board, there's a 1Mohm resistor from SD to Vin which, when

powering from 5V will give you the 'stereo average' output. If you want left or right

channel only, or if you are powering from non-5V power, you may need to experiment

with different resistors to get the desired voltage on SD

Assembly

•

•

•

•

©Adafruit Industries Page 12 of 45

Prepare the header strip:

Cut the strip to length if necessary. It will

be easier to solder if you insert it into a

breadboard - long pins down

Add the breakout board:

Place the breakout board over the pins so

that the short pins poke through the

breakout pads

©Adafruit Industries Page 13 of 45

https://learn.adafruit.com//assets/32619
https://learn.adafruit.com//assets/32619
https://learn.adafruit.com//assets/32620
https://learn.adafruit.com//assets/32620

And Solder!

Be sure to solder all pins for reliable

electrical contact.

(For tips on soldering, be sure to check out

our Guide to Excellent Soldering ()).

©Adafruit Industries Page 14 of 45

https://learn.adafruit.com//assets/32621
https://learn.adafruit.com//assets/32621
https://learn.adafruit.com//assets/32622
https://learn.adafruit.com//assets/32622
https://learn.adafruit.com//assets/32623
https://learn.adafruit.com//assets/32623
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering

You're done! Check your solder joints

visually and continue onto the next steps

If you want to use a terminal block for

connecting a speaker, place the 3.5mm

terminal so the mouthes point out.

©Adafruit Industries Page 15 of 45

https://learn.adafruit.com//assets/32625
https://learn.adafruit.com//assets/32625
https://learn.adafruit.com//assets/32626
https://learn.adafruit.com//assets/32626

Solder in both pins with plenty of solder!

Raspberry Pi Wiring

if you have a Raspberry Pi and you want higher quality audio than the headphone jack

can provide, I2S is a good option! You only use 3 pins, and since its a pure-digital

output, there can be less noise and interference. Of course, you'll need to make sure

that you have a nice strong 5V power supply so make sure to add 500mA or more to

your power supply requirements!

This board also works very well with boards that don't have audio like the Pi Zero

This technique will work with any Raspberry Pi with the 2x20 connector. Older Pi

1's with a 2x13 connector do not bring out the I2S pins as easily

©Adafruit Industries Page 16 of 45

https://learn.adafruit.com//assets/32627
https://learn.adafruit.com//assets/32627
https://learn.adafruit.com//assets/32628
https://learn.adafruit.com//assets/32628

Connect:

Amp Vin to Raspbery Pi 5V Power

Amp GND to Raspbery Pi Ground

Amp DIN to Raspbery Pi GPIO 21

Amp BCLK to Raspbery Pi GPIO 18

Amp LRCLK to Raspbery Pi GPIO 19

Check Raspberry Pi documentation for which pins are GPIO 18, 19, 21, 5V and GND ()

Raspberry Pi Setup

Fast Install

Luckily its quite easy to install support for I2S DACs on Raspbian.

•

•

•

•

•

At this time, Raspbery Pi linux kernel does not support mono audio out of the I2S

interface, you can only play stereo, so any mono audio files may need conversion

to stereo!

2017-11-2 Raspbian PIXEL ('full') has broken something in volume control. I2S

works, but there's no software volume setup, if you need this, try Raspbian Lite -

will try to fix as soon as we figure out why :)

©Adafruit Industries Page 17 of 45

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header
https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header

These instructions are totally cribbed from the PhatDAC instructions at the lovely folks

at Pimoroni! ()

Run the following from your Raspberry Pi with Internet connectivity:

curl -sS https://raw.githubusercontent.com/adafruit/Raspberry-Pi-

Installer-Scripts/master/i2samp.sh | bash

We've added an extra helper systemd script that will play quiet audio when the I2S

peripheral isn't in use. This removes popping when playback starts or stops. It uses a

tiny amount of CPU time (on a Pi Zero, 5%, on a Pi 2 or 3 its negligible). You don't

need this on RetroPie because it never releases the I2S device, but it's great for

Raspbian.

You will need to reboot once installed.

©Adafruit Industries Page 18 of 45

http://learn.pimoroni.com/tutorial/phat/raspberry-pi-phat-dac-install
http://learn.pimoroni.com/tutorial/phat/raspberry-pi-phat-dac-install

After rebooting, log back in and re-run the script again...It will ask you if you want to

test the speaker. Say yes and listen for audio to come out of your speakers...

If it sounds really distorted, it could be the volume is too high. However, in order to

have volume control appear in Raspbian desktop or Retropie you must reboot a

second time after doing the speaker test, with sudo reboot

Once rebooted, try running alsamixer and use arrow keys to lower the volume, 50% is

a good place to start.

If you're still having audio problems, try re-running the script and saying N (disable)

the /dev/zero playback service .

You can then go to the next page on testing and optimizing your setup. Skip the rest

of this page on Detailed Installation if the script worked for you!

You must reboot to enable the speaker hardware!

You must reboot *twice* to enable alsamixer volume (really!)

©Adafruit Industries Page 19 of 45

Detailed Install

If, for some reason, you can't just run the script and you want to go through the install

by hand - here's all the steps!

Update /etc/modprobe.d (if it exists)

Log into your Pi and get into a serial console (either via a console cable, the TV

console, RXVT, or what have you)

Edit the raspi blacklist with

sudo nano /etc/modprobe.d/raspi-blacklist.conf

If the file is empty, just skip this step

However, if you see the following lines:

blacklist i2c-bcm2708

blacklist snd-soc-pcm512x

blacklist snd-soc-wm8804

Update the lines by putting a # before each line

©Adafruit Industries Page 20 of 45

Save by typing Control-X Y <return>

Disable headphone audio (if it's set)

Edit the raspi modules list with

sudo nano /etc/modules

If the file is empty, just skip this step

However, if you see the following line:

snd_bcm2835

Put a # in front of it

©Adafruit Industries Page 21 of 45

and save with Control-X Y <return>

Create asound.conf file

Edit the raspi modules list with

sudo nano /etc/asound.conf

This file ought to be blank!

Copy and paste the following text into the file

pcm.speakerbonnet {
 type hw card 0
}

pcm.dmixer {
 type dmix
 ipc_key 1024
 ipc_perm 0666
 slave {
 pcm "speakerbonnet"
 period_time 0
 period_size 1024
 buffer_size 8192
 rate 44100
 channels 2
 }
}

ctl.dmixer {
 type hw card 0
}

©Adafruit Industries Page 22 of 45

pcm.softvol {
 type softvol
 slave.pcm "dmixer"
 control.name "PCM"
 control.card 0
}

ctl.softvol {
 type hw card 0
}

pcm.!default {
 type plug
 slave.pcm "softvol"
}

Save the file as usual

Add Device Tree Overlay

 Edit your Pi configuration file with

sudo nano /boot/config.txt

And scroll down to the bottom. If you see a line that says: dtparam=audio=on

©Adafruit Industries Page 23 of 45

Disable it by putting a # in front.

Then add:

dtoverlay=hifiberry-dac

dtoverlay=i2s-mmap

on the next line. Save the file.

Reboot your Pi with sudo reboot

Raspberry Pi Test

Speaker Tests!

OK you can use whatever software you like to play audio but if you'd like to test the

speaker output, here's some quick commands that will let you verify your amp and

speaker are working as they should!

©Adafruit Industries Page 24 of 45

Simple white noise speaker test

Run speaker-test -c2 to generate white noise out of the speaker, alternating left

and right.

If you have a mono output amplifier, the I2S amp merges left and right channels, so

you'll hear continuous white noise

Simple WAV speaker test

Once you've got something coming out, try to play an audio file with speaker-test (for

WAV files, not MP3)

speaker-test -c2 --test=wav -w /usr/share/sounds/alsa/

Front_Center.wav

You'll hear audio coming from left and right alternating speakers

Simple MP3 speaker test

If you want to play a stream of music, you can try

sudo apt-get install -y mpg123

mpg123 http://ice1.somafm.com/u80s-128-mp3

If you want to play MP3's on command, check out this tutorial which covers how to set

that up ()

At this time, Jessie Raspbery Pi kernel does not support mono audio out of the I2S

interface, you can only play stereo, so any mono audio files may need conversion to

stereo!

omxplayer does not seem use the I2S interface for audio - only HDMI - so you

won't be able to use it

©Adafruit Industries Page 25 of 45

http://learn.adafruit.com/playing-sounds-and-using-buttons-with-raspberry-pi
http://learn.adafruit.com/playing-sounds-and-using-buttons-with-raspberry-pi

Volume adjustment

Many programs like PyGame and Sonic Pi have volume control within the application.

For other programs you can set the volume using the command line tool called alsami

xer. Just type alsamixer in and then use the up/down arrows to set the volume. Press

Escape once its set

In Raspbian PIXEL you can set the volume using the menu item control. If it has an X

through it, try restarting the Pi (you have to restart twice after install to get PIXEL to

recognize the volume control

©Adafruit Industries Page 26 of 45

Pi I2S Tweaks

Reducing popping

For people who followed our original installation instructions with the simple alsa

config, they may find that the I2S audio pops when playing new audio.

The workaround is to use a software mixer to output a fixed sample rate to the I2S

device so the bit clock does not change. I use ALSA so I configured dmixer and I no

longer have any pops or clicks. Note that the RaspPi I2S driver does not support dmix

er by default and you must follow these instructions provided () to add it. Continue on

for step-by-step on how to enable it!

Step 1

Start by modify /boot/config.txt to add dtoverlay=i2s-mmap

Run sudo nano /boot/config.txt and add the text to the bottom like so:

Save and exit.

Then change /etc/asound.conf to:

pcm.speakerbonnet {
 type hw card 0
}

pcm.!default {
 type plug

This page is deprecated, our installer already performs these steps for you, but

we'll keep them here for archival use!

©Adafruit Industries Page 27 of 45

https://support.hifiberry.com/hc/en-us/articles/207397665-Mixing-different-audio-sources

 slave.pcm "dmixer"
}

pcm.dmixer {
 type dmix
 ipc_key 1024
 ipc_perm 0666
 slave {
 pcm "speakerbonnet"
 period_time 0
 period_size 1024
 buffer_size 8192
 rate 44100
 channels 2
 }
}

ctl.dmixer {
 type hw card 0
}

By running sudo nano /etc/asound.conf

This creates a PCM device called speakerbonnet which is connected to the hardware

I2S device. Then we make a new 'dmix' device (type dmix) called pcm.dmixer . We

give it a unique Inter Process Communication key (ipc_key 1024) and permissions

that are world-read-writeable (ipc_perm 0666) The mixer will control the hardware

pcm device speakerbonnet (pcm "speakerbonnet") and has a buffer set up so its nice

and fast. The communication buffer is set up so there's no delays (period_time 0 ,

period_size 1024 and buffer_size 8192 work well). The default mixed rate is

44.1khz stereo (rate 44100 channels 2)

Finally we set up a control interface but it ended up working best to just put in the

hardware device here - ctl.dmixer { type hw card 0 }

©Adafruit Industries Page 28 of 45

Save and exit. Then reboot the Pi to enable the mixer. Also, while it will greatly reduce

popping, you still may get one once in a while - especially when first playing audio!

Add software volume control

The basic I2S chipset used here does not have software control built in. So we have

to 'trick' the Pi into creating a software volume control. Luckily, its not hard once you

know how to do it ().

Create a new audio config file in ~/.asoundrc with nano ~/.asoundrc and inside put

the following text:

pcm.speakerbonnet {
 type hw card 0
}

pcm.dmixer {
 type dmix
 ipc_key 1024
 ipc_perm 0666
 slave {
 pcm "speakerbonnet"
 period_time 0
 period_size 1024
 buffer_size 8192
 rate 44100
 channels 2
 }
}

ctl.dmixer {
 type hw card 0
}

pcm.softvol {
 type softvol
 slave.pcm "dmixer"
 control.name "PCM"
 control.card 0
}

ctl.softvol {
 type hw card 0
}

pcm.!default {
 type plug
 slave.pcm "softvol"
}

This assumes you set up the dmixer for no-popping above!

©Adafruit Industries Page 29 of 45

http://alsa.opensrc.org/How_to_use_softvol_to_control_the_master_volume
http://alsa.opensrc.org/How_to_use_softvol_to_control_the_master_volume

Save and exit

Now, here's the trick, you have to reboot, then play some audio through alsa, then

reboot to get the alsamixer to sync up right:

speaker-test -c2 --test=wav -w /usr/share/sounds/alsa/

Front_Center.wav

Then you can type alsamixer to control the volume with the 'classic' alsa mixing

interface

Just press the up and down arrows to set the volume, and ESC to quit

©Adafruit Industries Page 30 of 45

Play Audio with PyGame

You can use mpg123 for basic testing but it's a little clumsy for use where you want to

dynamically change the volume or have an interactive program. For more powerful

audio playback we suggest using PyGame to playback a variety of audio formats (MP3

included!)

Install PyGame

Start by installing pygame support, you'll need to open up a console on your Pi with

network access and run:

sudo apt-get install python3-pygame

Next, download this pygame example zip to your Pi

Click to download PyGame example

code & sample mp3s

On the command line, run

wget https://cdn-learn.adafruit.com/assets/assets/000/041/506/

original/pygame_example.zip ()

unzip pygame_example.zip ()

Run Demo

Inside the zip is an example called pygameMP3.py

This example will playback all MP3's within the script's folder. To demonstrate that you

can also adjust the volume within pygame, the second argument is the volume for

playback. Specify a volume to playback with a command line argument between 0.0

and 1.0

For example here is how to play at 75% volume:

python pygameMP3.py 0.75

Here's the code if you have your own mp3s!

©Adafruit Industries Page 31 of 45

https://cdn-learn.adafruit.com/assets/assets/000/041/506/original/pygame_example.zip?1493840708
https://cdn-learn.adafruit.com/assets/assets/000/041/506/original/pygame_example.zip
https://cdn-learn.adafruit.com/assets/assets/000/041/506/original/pygame_example.zip
https://cdn-learn.adafruit.com/assets/assets/000/041/506/original/pygame_example.zip

''' pg_midi_sound101.py
play midi music files (also mp3 files) using pygame
tested with Python273/331 and pygame192 by vegaseat
'''
#code modified by James DeVito from here: https://www.daniweb.com/programming/
software-development/code/454835/let-pygame-play-your-midi-or-mp3-files

#!/usr/bin/python

import sys
import pygame as pg
import os
import time

def play_music(music_file):
 '''
 stream music with mixer.music module in blocking manner
 this will stream the sound from disk while playing
 '''
 clock = pg.time.Clock()
 try:
 pg.mixer.music.load(music_file)
 print("Music file {} loaded!".format(music_file))
 except pygame.error:
 print("File {} not found! {}".format(music_file, pg.get_error()))
 return

 pg.mixer.music.play()

 # If you want to fade in the audio...
 # for x in range(0,100):
 # pg.mixer.music.set_volume(float(x)/100.0)
 # time.sleep(.0075)
 # # check if playback has finished
 while pg.mixer.music.get_busy():
 clock.tick(30)

freq = 44100 # audio CD quality
bitsize = -16 # unsigned 16 bit
channels = 2 # 1 is mono, 2 is stereo
buffer = 2048 # number of samples (experiment to get right sound)
pg.mixer.init(freq, bitsize, channels, buffer)

if len(sys.argv) > 1:

 try:
 user_volume = float(sys.argv[1])
 except ValueError:
 print "Volume argument invalid. Please use a float (0.0 - 1.0)"
 pg.mixer.music.fadeout(1000)
 pg.mixer.music.stop()
 raise SystemExit

 print("Playing at volume: " + str(user_volume)+ "\n")
 pg.mixer.music.set_volume(user_volume)
 mp3s = []
 for file in os.listdir("."):
 if file.endswith(".mp3"):
 mp3s.append(file)

 print mp3s

 for x in mp3s:
 try:

©Adafruit Industries Page 32 of 45

 play_music(x)
 time.sleep(.25)
 except KeyboardInterrupt:
 # if user hits Ctrl/C then exit
 # (works only in console mode)
 pg.mixer.music.fadeout(1000)
 pg.mixer.music.stop()
 raise SystemExit
else:
 print("Please specify volume as a float! (0.0 - 1.0)")

Arduino Wiring & Test

The classic ATmega328P-based Arduino's like the UNO and Metro 328 don't have I2S

interfaces, so you can't use this breakout with them

But the newer ATSAMD21-based boards like the Zero, Metro M0, Feather M0 can!

(Note, Gemma M0 & Trinket M0 do not have I2S pins available). And so can the even

newer ATSAMD51-based boards like the Metro M4 and Feather M4.

To use I2S with M0 or M4 boards, you'll need to install the Adafruit Zero I2S library ().

It is available through the Library Manager. You can search for (see below) and then

just click the install button.

Wiring

Wiring connections are the same as those used for CircuitPython. So go to the Circuit

Python Wiring & Test page to see how to wire the breakout for your specific board.

©Adafruit Industries Page 33 of 45

https://github.com/adafruit/Adafruit_ZeroI2S

Basic Test

To test things out, try running the demo below. It comes with the library installation, so

you can find it by going to:

File -> Examples -> Adafruit Zero I2S Library -> basic

Be sure to change this line:

Adafruit_ZeroI2S i2s(0, 1, 9, 2);

to match the pins used for your setup. If you've wired as shown in this guide, then you

can try using the default pins by changing that line to this:

Adafruit_ZeroI2S i2s;

#include <Arduino.h>

#include <Adafruit_ZeroI2S.h>
#include <math.h>

/* max volume for 32 bit data */
#define VOLUME ((1UL << 31) - 1)

/* create a buffer for both the left and right channel data */
#define BUFSIZE 128
int left[BUFSIZE];
int right[BUFSIZE];

// Use default pins in board variant
Adafruit_ZeroI2S i2s = Adafruit_ZeroI2S();

void setup()
{
 while (!Serial) delay(10);

 Serial.println("I2S demo");

 for(int i=0; i<BUFSIZE; i++){
 /* create a sine wave on the left channel */
 left[i] = sin((2*PI / (BUFSIZE)) * i) * VOLUME;

 /* create a cosine wave on the right channel */
 right[i] = cos((2*PI / (BUFSIZE)) * i) * VOLUME;
 }

 /* begin I2S on the default pins. 24 bit depth at
 * 44100 samples per second
 */
 i2s.begin(I2S_32_BIT, 44100);
 i2s.enableTx();
}

void loop()
{
 /* write the output buffers
 * note that i2s.write() will block until both channels are written.

©Adafruit Industries Page 34 of 45

 */
 for(int i=0; i<BUFSIZE; i++){
 i2s.write(left[i], right[i]);
 }
}

DMA Test

The basic test above created the output directly by using the i2s.write() function

in a loop. Another approach is to use DMA to generate the output. With this approach,

you do some initial setup to configure the DMA engine for playback. It can then take

care of generating the output in the background allowing you to do other things in

your code.

To take this approach, you will need to install the Zero DMA library (). You can do that

through the Library Manager:

And then you can use the DMA example found in the Zero I2S library:

File -> Examples -> Adafruit Zero I2S Library -> dma

#include <Adafruit_ZeroI2S.h>
#include <Adafruit_ZeroDMA.h>
#include "utility/dma.h"
#include <math.h>

/* max volume for 32 bit data */
#define VOLUME ((1UL << 31) - 1)

/* create a buffer for both the left and right channel data */
#define BUFSIZE 256
int data[BUFSIZE];

Adafruit_ZeroDMA myDMA;
ZeroDMAstatus stat; // DMA status codes returned by some functions

Adafruit_ZeroI2S i2s;

void dma_callback(Adafruit_ZeroDMA *dma) {

©Adafruit Industries Page 35 of 45

https://github.com/adafruit/Adafruit_ZeroDMA

 /* we don't need to do anything here */
}

void setup()
{
 Serial.begin(115200);
 //while(!Serial); // Wait for Serial monitor before continuing

 Serial.println("I2S output via DMA");

 int *ptr = data;

 /*the I2S module will be expecting data interleaved LRLR*/
 for(int i=0; i<BUFSIZE/2; i++){
 /* create a sine wave on the left channel */
 *ptr++ = sin((2*PI / (BUFSIZE/2)) * i) * VOLUME;

 /* create a cosine wave on the right channel */
 *ptr++ = cos((2*PI / (BUFSIZE/2)) * i) * VOLUME;
 }

 Serial.println("Configuring DMA trigger");
 myDMA.setTrigger(I2S_DMAC_ID_TX_0);
 myDMA.setAction(DMA_TRIGGER_ACTON_BEAT);

 Serial.print("Allocating DMA channel...");
 stat = myDMA.allocate();
 myDMA.printStatus(stat);

 Serial.println("Setting up transfer");
 myDMA.addDescriptor(
 data, // move data from here
#if defined(__SAMD51__)
 (void *)(&I2S->TXDATA.reg), // to here (M4)
#else
 (void *)(&I2S->DATA[0].reg), // to here (M0+)
#endif
 BUFSIZE, // this many...
 DMA_BEAT_SIZE_WORD, // bytes/hword/words
 true, // increment source addr?
 false);
 myDMA.loop(true);
 Serial.println("Adding callback");
 myDMA.setCallback(dma_callback);

 /* begin I2S on the default pins. 24 bit depth at
 * 44100 samples per second
 */
 i2s.begin(I2S_32_BIT, 44100);
 i2s.enableTx();

 stat = myDMA.startJob();
}

void loop()
{
 Serial.println("do other things here while your DMA runs in the background.");
 delay(2000);
}

CircuitPython Wiring & Test

CircuitPython 3.0 and higher has I2S built in which means you can use this breakout

super easily with the supported M0 and M4 Express CircuitPython boards! Supported

©Adafruit Industries Page 36 of 45

boards are Feather M0 Express, Feather M4 Express, Metro M0 Express, Metro M4

Express, and ItsyBitsy M0 Express.

Note that Trinket M0, Gemma M0 and ItsyBitsy M4 do not support I2S (the last one is

not a typo!)

The M0 boards have multiple I2S pin combinations available. We're going to

demonstrate a single pin combination for each board.

Wiring

The following wiring diagrams show how to connect the MAX98357 breakout to your

CircuitPython board. You'll be using voltage in, ground, bit clock, left/right clock and

data pins.

VIN is the red wire.

GND is the black wire.

BCLK is the blue wire.

LRC is the yellow wire.

DIN is the green wire.

•

•

•

•

•

©Adafruit Industries Page 37 of 45

For Feather M0 Express, ItsyBitsy M0

Express and Metro M0 Express:

Connect VIN on the breakout to 3V/3.3 on

the board.

Connect GND on the breakout to G/GND

on the board.

Connect BCLK on the breakout to D1/TX

on the board.

Connect LRC on the breakout to D0/RX on

the board.

Connect DIN on the breakout to D9 on the

board.

©Adafruit Industries Page 38 of 45

https://learn.adafruit.com//assets/57793
https://learn.adafruit.com//assets/57793
https://learn.adafruit.com//assets/57794
https://learn.adafruit.com//assets/57794
https://learn.adafruit.com//assets/57795
https://learn.adafruit.com//assets/57795

For Feather M4 Express:

Connect VIN on the breakout to 3V on the

board.

Connect GND on the breakout to Gnd on

the board.

Connect BCLK on the breakout to TX on

the board.

Connect LRC on the breakout to D10 on

the board.

Connect DIN on the breakout to D11 on the

board.

For Metro M4 Express:

Connect VIN on the breakout to 3.3 on the

board.

Connect GND on the breakout to GND on

the board.

Connect BCLK on the breakout to D3 on

the board.

Connect LRC on the breakout to D9 on the

board.

Connect DIN on the breakout to D8 on the

board.

Code Examples

We have two CircuitPython code examples. The first plays a generated tone through

the speaker on the breakout. The second plays a wave file. Let's take a look!

Tone Generation

The first example generates one period of a sine wave and then loops it to generate a

tone. You can change the volume and the Hz of the tone by changing the associated

variables. Inside the loop, we play the tone for one second and stop it for one second.

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

©Adafruit Industries Page 39 of 45

https://learn.adafruit.com//assets/57831
https://learn.adafruit.com//assets/57831
https://learn.adafruit.com//assets/57800
https://learn.adafruit.com//assets/57800

import time
import array
import math
import audiocore
import board
import audiobusio

sample_rate = 8000
tone_volume = .1 # Increase or decrease this to adjust the volume of the tone.
frequency = 440 # Set this to the Hz of the tone you want to generate.
length = sample_rate // frequency # One freqency period
sine_wave = array.array("H", [0] * length)
for i in range(length):
 sine_wave[i] = int((math.sin(math.pi * 2 * frequency * i / sample_rate) *
 tone_volume + 1) * (2 ** 15 - 1))

For Feather M0 Express, ItsyBitsy M0 Express, Metro M0 Express
audio = audiobusio.I2SOut(board.D1, board.D0, board.D9)
For Feather M4 Express
audio = audiobusio.I2SOut(board.D1, board.D10, board.D11)
For Metro M4 Express
audio = audiobusio.I2SOut(board.D3, board.D9, board.D8)
sine_wave_sample = audiocore.RawSample(sine_wave, sample_rate=sample_rate)

while True:
 audio.play(sine_wave_sample, loop=True)
 time.sleep(1)
 audio.stop()
 time.sleep(1)

For Feather M0 Express, ItsyBitsy M0 Express and Metro M0 Express, no changes are

needed for the code to work.

For Feather M4 Express, comment out audio = audiobusio.I2SOut(board.D1,

board.D0, board.D9) and uncomment # audio =

audiobusio.I2SOut(board.D1, board.D10, board.D11) .

For Metro M4 Express, comment out audio = audiobusio.I2SOut(board.D1,

board.D0, board.D9) and uncomment # audio =

audiobusio.I2SOut(board.D3, board.D3, board.D8) .

Now you'll hear one second of a 440Hz tone, and one second of silence.

You can try changing the Hz of the tone to produce different tones. Try changing the

number of seconds in time.sleep() to produce longer or shorter tones.

Wave File

The second example plays a wave file. We open the file in a readable format. Then

inside the loop, we play the file and tell the code to continue playing the file until it's

completed. You can use any supported wave file (). We've included the wave file used

in the code.

©Adafruit Industries Page 40 of 45

https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out#play-a-wave-file

StreetChicken.wav

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

import audiocore
import board
import audiobusio

wave_file = open("StreetChicken.wav", "rb")
wave = audiocore.WaveFile(wave_file)

For Feather M0 Express, ItsyBitsy M0 Express, Metro M0 Express
audio = audiobusio.I2SOut(board.D1, board.D0, board.D9)
For Feather M4 Express
audio = audiobusio.I2SOut(board.D1, board.D10, board.D11)
For Metro M4 Express
audio = audiobusio.I2SOut(board.D3, board.D9, board.D8)

while True:
 audio.play(wave)
 while audio.playing:
 pass

The object setup in the code is the same as above.

For Feather M0 Express, ItsyBitsy M0 Express and Metro M0 Express, no changes are

needed for the code to work.

For Feather M4 Express, comment out audio = audiobusio.I2SOut(board.D1,

board.D0, board.D9) and uncomment # audio =

audiobusio.I2SOut(board.D1, board.D10, board.D11) .

For Metro M4 Express, comment out audio = audiobusio.I2SOut(board.D1,

board.D0, board.D9) and uncomment # audio =

audiobusio.I2SOut(board.D3, board.D3, board.D8) .

Now you'll hear the wave file play through and loop.

There's plenty you can do with this example. Try playing a different wave file, or,

instead of including while audio.playing: pass , include a time.sleep() to

have it play for a specified number of seconds. Check out the Audio Out page in the

CircuitPython Essentials guide () for pause and resume features.

Where's my I2S?

We mentioned earlier that the supported M0 boards have multiple I2S pin

combinations available to you. The M4 boards have one option. Either way, if you'd

©Adafruit Industries Page 41 of 45

https://cdn-learn.adafruit.com/assets/assets/000/057/801/original/StreetChicken.wav?1532037889
https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out
https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out

like to know what options are available to you, copy the following code into your code

.py, connect to the serial console, and check out the output.

These are the results from the ItsyBitsy M0 Express.

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

import board
import audiobusio
from microcontroller import Pin

def is_hardware_i2s(bit_clock, word_select, data):
 try:
 p = audiobusio.I2SOut(bit_clock, word_select, data)
 p.deinit()
 return True
 except ValueError:
 return False

def get_unique_pins():
 exclude = ['NEOPIXEL', 'APA102_MOSI', 'APA102_SCK']
 pins = [pin for pin in [
 getattr(board, p) for p in dir(board) if p not in exclude]
 if isinstance(pin, Pin)]
 unique = []
 for p in pins:
 if p not in unique:
 unique.append(p)
 return unique

for bit_clock_pin in get_unique_pins():
 for word_select_pin in get_unique_pins():
 for data_pin in get_unique_pins():
 if bit_clock_pin is word_select_pin or bit_clock_pin is data_pin or
word_select_pin\
 is data_pin:
 continue
 if is_hardware_i2s(bit_clock_pin, word_select_pin, data_pin):
 print("Bit clock pin:", bit_clock_pin, "\t Word select pin:",
word_select_pin,
 "\t Data pin:", data_pin)

©Adafruit Industries Page 42 of 45

 else:
 pass

I2S Audio FAQ

Hey in Raspbian Pixel desktop, the speaker icon is X'd

out!

Try rebooting once after playing some audio. Also make sure you have our latest

alsa configuration (check the detailed install page on the Raspberry Pi Setup page

for the /etc/asound.conf !

If its still not working, you can still change the volume, just use alsamixer from a

Terminal command prompt.

Even with dmixer enabled, I get a staticy-pop when the Pi

first boots or when it first starts playing audio

Yep, this is a known Raspbian Linux thing. Yay Linux! We don't have a fix for it. If it

makes you feel better, my fancy Windows development computer does the same

thing with my desktop speakers.

You can reduce popping a lot with the '/dev/zero play' option in the i2s setup

script. (We added it in October 2018) but you still might get that one initial pop

The audio on my DAC sounds really bad/distorted

Make sure you've lowered the volume. The default is 100% which is waaaay too

high! Use alsamixer to reduce the volume to 50% or so

Does this work with my favorite software?

It will work with anything that has alsa audio support. There's thousands of linux

programs so we can't guarantee all of them will work but here's what we found

does for sure!

PyGame - see our page on playing audio with PyGame () for example code.

Volume can be controlled within pygame

mpg123 - command line mp3 audio playback. use alsamixer to control the

volume

aplay - for playing wav files on the command line

•

•

•

©Adafruit Industries Page 43 of 45

file:///home/adafruit-speaker-bonnet-for-raspberry-pi/audio-with-pygame

Sonic Pi - tested in the Pixel Desktop. Use the Sonic Pi settings panel to

change the volume - it does not seem to care about what global audio

volume you set!

Scratch 2 - tested in the Pixel Desktop. Works fine but may have a delay and

make a popping sound the first time you play audio. You can set volume with

alsamixer and also via the app by using the set volume to nn% block

Scratch 1 - doesn't work, something not set up with Scratch 1 to use alsa?

RetroPie/Emulation Station - audio works within games (we tested NES and

MAME libretro) but does not work in the 'main screen' (selecting which game

to play interface)

Downloads

MAX98357 Datasheet ()

GitHub with EagleCAD PCB Files ()

3D Models on GitHub ()

Fritzing object in the Adafruit Fritzing library ()

Schematic

Click to embiggen

Fabrication Print

Dimensions in Inches

•

•

•

•

•

•

•

•

©Adafruit Industries Page 44 of 45

https://cdn-shop.adafruit.com/product-files/3006/MAX98357A-MAX98357B.pdf
https://github.com/adafruit/Adafruit-MAX98357-I2S-Amp-Breakout
https://github.com/adafruit/Adafruit_CAD_Parts/tree/main/3006%20MAX98357
https://github.com/adafruit/Fritzing-Library

3D Model

©Adafruit Industries Page 45 of 45

	Adafruit MAX98357 I2S Class-D Mono Amp
	Table of Contents
	Overview
	Pinouts
	Assembly
	Raspberry Pi Wiring
	Raspberry Pi Setup
	Raspberry Pi Test
	Pi I2S Tweaks
	Play Audio with PyGame
	Arduino Wiring & Test
	CircuitPython Wiring & Test
	I2S Audio FAQ
	Downloads

	Overview
	Pinouts
	Speaker Output
	Power Pins
	I2S Pins
	Other Pins
	Gain

	SD / MODE
	Assembly
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Raspberry Pi Wiring
	Raspberry Pi Setup
	Fast Install
	Detailed Install
	Update /etc/modprobe.d (if it exists)
	Disable headphone audio (if it's set)
	Create asound.conf file
	Add Device Tree Overlay

	Raspberry Pi Test
	Speaker Tests!
	Simple white noise speaker test
	Simple WAV speaker test
	Simple MP3 speaker test

	Volume adjustment
	Pi I2S Tweaks
	Reducing popping
	Step 1

	Add software volume control
	Play Audio with PyGame
	Install PyGame
	Run Demo
	Arduino Wiring & Test
	Wiring
	Basic Test
	DMA Test

	CircuitPython Wiring & Test
	Wiring
	Code Examples
	Tone Generation
	Wave File
	Where's my I2S?

	I2S Audio FAQ
	Hey in Raspbian Pixel desktop, the speaker icon is X'd out!
	Even with dmixer enabled, I get a staticy-pop when the Pi first boots or when it first starts playing audio
	The audio on my DAC sounds really bad/distorted
	Does this work with my favorite software?

	Downloads
	Schematic
	Fabrication Print
	3D Model

