

Adafruit MagTag Kitchen Timer

Created by Dylan Herrada

https://learn.adafruit.com/adafruit-magtag-kitchen-timer

Last updated on 2021-11-15 08:16:29 PM EST

©Adafruit Industries Page 1 of 25

3

3

5

6

7

7

8

9

10

10

11

11

12

16

16

16

16

17

19

19

20

20

20

23

23

Table of Contents

Overview

• Parts

Install CircuitPython

• Set Up CircuitPython

• Option 1 - Load with UF2 Bootloader

• Try Launching UF2 Bootloader

• Option 2 - Use esptool to load BIN file

• Option 3 - Use Chrome Browser To Upload BIN file

CircuitPython Internet Libraries

• Adafruit CircuitPython Library Bundle

CircuitPython Internet Test

• Secrets File

• Connect to WiFi

Getting The Date & Time

• Step 1) Make an Adafruit account

• Step 2) Sign into Adafruit IO

• Step 3) Get your Adafruit IO Key

• Step 4) Upload Test Python Code

MagTag-Specific CircuitPython Libraries

• Get Latest Adafruit CircuitPython Bundle

• Secrets

Code the Kitchen Timer

• Installing the Project Code

• Code Behavior

• Code Run Through

©Adafruit Industries Page 2 of 25

Overview

If you're like me, one of the things that makes cooking kind of difficult is keeping track

of time. This project makes that much less of an issue, giving you a magnetic timer

that you can put just about anywhere with both visual and sound alerts to tell you

when the timer is done.

This project uses the eInk display, NeoPixels, and built-in buttons of the Adafruit

MagTag to make a rechargeable, programmable kitchen timer that is also magnetic.

The MagTag displays the time left and then plays an alarm through the speaker and

flashes the NeoPixels when the timer is done.

Parts

This kit contains all the parts except for a cable:

This project doesn't use deep sleep so keep it plugged in between uses OR you

can use the on/off switch to turn it off when not in use

©Adafruit Industries Page 3 of 25

Adafruit MagTag Starter Kit - ADABOX017

Essentials

The Adafruit MagTag combines the new

ESP32-S2 wireless module and a 2.9"

grayscale E-Ink display to make a low-

power IoT display that can show data on

its screen...

https://www.adafruit.com/product/4819

Or get the pieces separately:

Adafruit MagTag - 2.9" Grayscale E-Ink

WiFi Display

The Adafruit MagTag combines the new

ESP32-S2 wireless module and a 2.9"

grayscale E-Ink display to make a low-

power IoT display that can show data on

its screen even when power...

https://www.adafruit.com/product/4800

Mini Magnet Feet for RGB LED Matrices

(Pack of 4)

Got a glorious RGB Matrix project you

want to mount and display in your

workspace or home? If you have one of

the matrix panels listed below, you'll need

a pack of these...

https://www.adafruit.com/product/4631

©Adafruit Industries Page 4 of 25

https://www.adafruit.com/product/4819
https://www.adafruit.com/product/4819
https://www.adafruit.com/product/4819
https://www.adafruit.com/product/4800
https://www.adafruit.com/product/4800
https://www.adafruit.com/product/4800
https://www.adafruit.com/product/4631
https://www.adafruit.com/product/4631
https://www.adafruit.com/product/4631

Lithium Ion Polymer Battery with Short

Cable - 3.7V 420mAh

Lithium-ion polymer (also known as 'lipo'

or 'lipoly') batteries are thin, light, and

powerful. The output ranges from 4.2V

when completely charged to 3.7V. This...

https://www.adafruit.com/product/4236

Get a USB-A to USB-C cable to connect your computer to the MagTag:

USB Type A to Type C Cable - 1ft - 0.3

meter

As technology changes and adapts, so

does Adafruit. This USB Type A to Type C

cable will help you with the transition to

USB C, even if you're still...

https://www.adafruit.com/product/4473

USB Type A to Type C Cable - approx 1

meter / 3 ft long

As technology changes and adapts, so

does Adafruit. This USB Type A to Type C

cable will help you with the transition to

USB C, even if you're still...

https://www.adafruit.com/product/4474

Install CircuitPython

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)

designed to simplify experimentation and education on low-cost microcontrollers. It

makes it easier than ever to get prototyping by requiring no upfront desktop software

downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

©Adafruit Industries Page 5 of 25

https://www.adafruit.com/product/4236
https://www.adafruit.com/product/4236
https://www.adafruit.com/product/4236
https://www.adafruit.com/product/4473
https://www.adafruit.com/product/4473
https://www.adafruit.com/product/4473
https://www.adafruit.com/product/4474
https://www.adafruit.com/product/4474
https://www.adafruit.com/product/4474
https://github.com/adafruit/circuitpython
https://micropython.org

Set Up CircuitPython

Follow the steps to get CircuitPython installed on your MagTag.

Download the latest CircuitPython

for your board from

circuitpython.org

https://adafru.it/OBd

Click the link above and download the

latest .BIN and .UF2 file

(depending on how you program the

ESP32S2 board you may need one or the

other, might as well get both)

Download and save it to your desktop (or

wherever is handy).

Plug your MagTag into your computer

using a known-good USB cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

©Adafruit Industries Page 6 of 25

https://circuitpython.org/board/adafruit_magtag_2.9_grayscale/
https://learn.adafruit.com//assets/97427
https://learn.adafruit.com//assets/97427
https://learn.adafruit.com//assets/97428
https://learn.adafruit.com//assets/97428
https://learn.adafruit.com//assets/96955
https://learn.adafruit.com//assets/96955

Option 1 - Load with UF2 Bootloader

This is by far the easiest way to load CircuitPython. However it requires your board

has the UF2 bootloader installed. Some early boards do not (we hadn't written UF2

yet!) - in which case you can load using the built in ROM bootloader.

Still, try this first!

Try Launching UF2

Bootloader
Loading CircuitPython by drag-n-drop

UF2 bootloader is the easier way and we

recommend it. If you have a MagTag

where the front of the board is black,

your MagTag came with UF2 already on

it.

Launch UF2 by double-clicking the Reset

button (the one next to the USB C port).

You may have to try a few times to get

the timing right.

If the UF2 bootloader is installed, you will

see a new disk drive appear called

MAGTAGBOOT

©Adafruit Industries Page 7 of 25

https://learn.adafruit.com//assets/97429
https://learn.adafruit.com//assets/97429
https://learn.adafruit.com//assets/97430
https://learn.adafruit.com//assets/97430
https://learn.adafruit.com//assets/97431
https://learn.adafruit.com//assets/97431

Copy the UF2 file you downloaded at the

first step of this tutorial onto the

MAGTAGBOOT drive

If you're using Windows and you get an error at the end of the file copy that says Erro

r from the file copy, Error 0x800701B1: A device which does not exist was specified. Y

ou can ignore this error, the bootloader sometimes disconnects without telling

Windows, the install completed just fine and you can continue. If its really annoying,

you can also upgrade the bootloader (the latest version of the UF2 bootloader fixes

this warning) (https://adafru.it/Pfk)

Your board should auto-reset into

CircuitPython, or you may need to press

reset. A CIRCUITPY drive will appear.

You're done! Go to the next pages.

Option 2 - Use esptool to load BIN file

If you have an original MagTag with while soldermask on the front, we didn't have UF2

written for the ESP32S2 yet so it will not come with the UF2 bootloader.

You can upload with esptool to the ROM (hardware) bootloader instead!

©Adafruit Industries Page 8 of 25

https://learn.adafruit.com//assets/97432
https://learn.adafruit.com//assets/97432
https://learn.adafruit.com/adafruit-magtag/install-uf2-bootloader
https://learn.adafruit.com/adafruit-magtag/install-uf2-bootloader
https://learn.adafruit.com/adafruit-magtag/install-uf2-bootloader
https://learn.adafruit.com//assets/97433
https://learn.adafruit.com//assets/97433

Follow the initial steps found in the Run

esptool and check connection section of

the ROM Bootloader page (https://

adafru.it/OBc) to verify your environment

is set up, your board is successfully

connected, and which port it's using.

In the final command to write a binary file

to the board, replace the port with your

port, and replace "firmware.bin" with the

the file you downloaded above.

The output should look something like

the output in the image.

Press reset to exit the bootloader.

Your CIRCUITPY drive should appear!

You're all set! Go to the next pages.

Option 3 - Use Chrome Browser To Upload

BIN file

If for some reason you cannot get esptool to run, you can always try using the

Chrome-browser version of esptool we have written. This is handy if you don't have

Python on your computer, or something is really weird with your setup that makes

esptool not run (which happens sometimes and isn't worth debugging!) You can follow

along on the Web Serial ESPTool (https://adafru.it/Pdq) page and either load the UF2

bootloader and then come back to Option 1 on this page, or you can download the

CircuitPython BIN file directly using the tool in the same manner as the bootloader.

©Adafruit Industries Page 9 of 25

https://learn.adafruit.com//assets/96950
https://learn.adafruit.com//assets/96950
https://learn.adafruit.com/adafruit-magtag/rom-bootloader#run-esptool-and-check-connection-3076823-5
https://learn.adafruit.com/adafruit-magtag/rom-bootloader#run-esptool-and-check-connection-3076823-5
https://learn.adafruit.com/adafruit-magtag/rom-bootloader#run-esptool-and-check-connection-3076823-5
https://learn.adafruit.com//assets/96951
https://learn.adafruit.com//assets/96951
https://learn.adafruit.com/adafruit-magtag/web-serial-esptool

CircuitPython Internet Libraries

To use the internet-connectivity built into your ESP32-S2 with CircuitPython, you must

first install a number of libraries. This page covers that process.

Adafruit CircuitPython Library Bundle

Download the Adafruit CircuitPython Bundle. You can find the latest release here:

Download latest CircuitPython

Library Bundle

https://adafru.it/ENC

Download the adafruit-circuitpython-bundle-version-mpy-*.zip bundle zip file, and

unzip a folder of the same name. Inside you'll find a lib folder. The entire collection of

libraries is too large to fit on the CIRCUITPY drive. Instead, add each library as you

need it, this will reduce the space usage but you'll need to put in a little more effort.

At a minimum we recommend the following libraries, in fact we more than

recommend. They're basically required. So grab them and install them into CIRCUITP

Y/lib now!

adafruit_requests.mpy - A requests-like library for HTTP commands.

neopixel.mpy - Helper library to use NeoPixel LEDs, often built into the boards

so they're great for quick feedback

Once you have added those files, please continue to the next page to set up and test

Internet connectivity

•

•

©Adafruit Industries Page 10 of 25

https://circuitpython.org/libraries

CircuitPython Internet Test

Once you have CircuitPython installed and the minimum libraries installed we can get

your board connected to the Internet.

To get connected, you will need to start by creating a secrets.py file.

Secrets File

We expect people to share tons of projects as they build CircuitPython WiFi widgets.

What we want to avoid is people accidentally sharing their passwords or secret

tokens and API keys. So, we designed all our examples to use a secrets.py file, that is

in your CIRCUITPY drive, to hold secret/private/custom data. That way you can share

your main project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

This file is where you keep secret settings, passwords, and tokens!

If you put them in the code you risk committing that info or sharing it

secrets = {

 'ssid' : 'home_wifi_network',

 'password' : 'wifi_password',

 'aio_username' : 'my_adafruit_io_username',

 'aio_key' : 'my_adafruit_io_key',

 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones

 }

Copy and paste that text/code into a file called secrets.py and save it to your

CIRCUITPY folder like so:

©Adafruit Industries Page 11 of 25

Inside is a python dictionary named secrets with a line for each entry. Each entry has

an entry name (say 'ssid') and then a colon to separate it from the entry key 'home

ssid' and finally a comma ,

At a minimum you'll need to adjust the ssid and password for your local WiFi setup

so do that now!

As you make projects you may need more tokens and keys, just add them one line at

a time. See for example other tokens such as one for accessing github or the

hackaday API. Other non-secret data like your timezone can also go here, just cause

its called secrets doesn't mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones (https://

adafru.it/EcP) and remember that if your city is not listed, look for a city in the same

time zone, for example Boston, New York, Philadelphia, Washington DC, and Miami

are all on the same time as New York.

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other

project-sharing sites.

Connect to WiFi

OK now you have your secrets setup - you can connect to the Internet using the

Requests module.

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(https://adafru.it/zdx). Our introduction guide has a great page on how to install the

library bundle (https://adafru.it/ABU).

adafruit_requests

neopixel

Before continuing make sure your board's CIRCUITPY/lib folder or root filesystem has

the above files copied over.

Don't share your secrets.py file, it has your passwords and API keys in it!

•

•

©Adafruit Industries Page 12 of 25

http://worldtimeapi.org/timezones
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Once that's done, load up the following example using Mu or your favorite editor:

import ipaddress

import ssl

import wifi

import socketpool

import adafruit_requests

URLs to fetch from

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

JSON_QUOTES_URL = "https://www.adafruit.com/api/quotes.php"

JSON_STARS_URL = "https://api.github.com/repos/adafruit/circuitpython"

Get wifi details and more from a secrets.py file

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

print("ESP32-S2 WebClient Test")

print("My MAC addr:", [hex(i) for i in wifi.radio.mac_address])

print("Available WiFi networks:")

for network in wifi.radio.start_scanning_networks():

 print("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),

 network.rssi, network.channel))

wifi.radio.stop_scanning_networks()

print("Connecting to %s"%secrets["ssid"])

wifi.radio.connect(secrets["ssid"], secrets["password"])

print("Connected to %s!"%secrets["ssid"])

print("My IP address is", wifi.radio.ipv4_address)

ipv4 = ipaddress.ip_address("8.8.4.4")

print("Ping google.com: %f ms" % (wifi.radio.ping(ipv4)*1000))

pool = socketpool.SocketPool(wifi.radio)

requests = adafruit_requests.Session(pool, ssl.create_default_context())

print("Fetching text from", TEXT_URL)

response = requests.get(TEXT_URL)

print("-" * 40)

print(response.text)

print("-" * 40)

print("Fetching json from", JSON_QUOTES_URL)

response = requests.get(JSON_QUOTES_URL)

print("-" * 40)

print(response.json())

©Adafruit Industries Page 13 of 25

print("-" * 40)

print()

print("Fetching and parsing json from", JSON_STARS_URL)

response = requests.get(JSON_STARS_URL)

print("-" * 40)

print("CircuitPython GitHub Stars", response.json()["stargazers_count"])

print("-" * 40)

print("done")

And save it to your board. Make sure the file is named code.py.

Open up your REPL, you should see something like the following:

In order, the example code...

Checks the ESP32-S2's MAC address.

print("My MAC addr:", [hex(i) for i in wifi.radio.mac_address])

Performs a scan of all access points and prints out the access point's name (SSID),

signal strength (RSSI), and channel.

print("Avaliable WiFi networks:")

for network in wifi.radio.start_scanning_networks():

 print("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),

©Adafruit Industries Page 14 of 25

 network.rssi, network.channel))

wifi.radio.stop_scanning_networks()

Connects to the access point you defined in the secrets.py file, prints out its local IP

address, and attempts to ping google.com to check its network connectivity.

print("Connecting to %s"%secrets["ssid"])

wifi.radio.connect(secrets["ssid"], secrets["password"])

print(print("Connected to %s!"%secrets["ssid"]))

print("My IP address is", wifi.radio.ipv4_address)

ipv4 = ipaddress.ip_address("8.8.4.4")

print("Ping google.com: %f ms" % wifi.radio.ping(ipv4))

The code creates a socketpool using the wifi radio's available sockets. This is

performed so we don't need to re-use sockets. Then, it initializes a a new instance of

the requests (https://adafru.it/E9o) interface - which makes getting data from the

internet really really easy.

pool = socketpool.SocketPool(wifi.radio)

requests = adafruit_requests.Session(pool, ssl.create_default_context())

To read in plain-text from a web URL, call requests.get - you may pass in either a

http, or a https url for SSL connectivity.

print("Fetching text from", TEXT_URL)

response = requests.get(TEXT_URL)

print("-" * 40)

print(response.text)

print("-" * 40)

Requests can also display a JSON-formatted response from a web URL using a call to

requests.get .

print("Fetching json from", JSON_QUOTES_URL)

response = requests.get(JSON_QUOTES_URL)

print("-" * 40)

print(response.json())

print("-" * 40)

Finally, you can fetch and parse a JSON URL using requests.get . This code snippet

obtains the stargazers_count field from a call to the GitHub API.

print("Fetching and parsing json from", JSON_STARS_URL)

response = requests.get(JSON_STARS_URL)

print("-" * 40)

print("CircuitPython GitHub Stars", response.json()["stargazers_count"])

print("-" * 40)

©Adafruit Industries Page 15 of 25

http://docs.python-requests.org/en/master/

OK you now have your ESP32-S2 board set up with a proper secrets.py file and can

connect over the Internet. If not, check that your secrets.py file has the right ssid and

password and retrace your steps until you get the Internet connectivity working!

Getting The Date & Time

A very common need for projects is to know the current date and time. Especially

when you want to deep sleep until an event, or you want to change your display

based on what day, time, date, etc. it is

Determining the correct local time is really really hard. There are various time zones,

Daylight Savings dates, leap seconds, etc. Trying to get NTP time and then back-

calculating what the local time is, is extraordinarily hard on a microcontroller just isn't

worth the effort and it will get out of sync as laws change anyways.

For that reason, we have the free adafruit.io time service. Free for anyone, with a free

adafruit.io account. You do need an account because we have to keep accidentally

mis-programmed-board from overwhelming adafruit.io and lock them out temporarily.

Again, it's free!

Step 1) Make an Adafruit account

It's free! Visit https://accounts.adafruit.com/ (https://adafru.it/dyy) to register and make

an account if you do not already have one

Step 2) Sign into Adafruit IO

Head over to io.adafruit.com (https://adafru.it/fsU) and click Sign In to log into IO using

your Adafruit account. It's free and fast to join.

Step 3) Get your Adafruit IO Key

Click on My Key in the top bar

There are other services like WorldTimeAPI, but we don't use those for our

guides because they are nice people and we don't want to accidentally overload

their site. Also, there's a chance it may eventually go down or also require an

account.

©Adafruit Industries Page 16 of 25

https://accounts.adafruit.com/
https://io.adafruit.com/

You will get a popup with your Username and Key (In this screenshot, we've covered it

with red blocks)

Go to your secrets.py file on your CIRCUITPY drive and add three lines for aio_user

name , aio_key and timezone so you get something like the following:

This file is where you keep secret settings, passwords, and tokens!

If you put them in the code you risk committing that info or sharing it

secrets = {

 'ssid' : 'home_wifi_network',

 'password' : 'wifi_password',

 'aio_username' : 'my_adafruit_io_username',

 'aio_key' : 'my_adafruit_io_key',

 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones

 }

The timezone is optional, if you don't have that entry, adafruit.io will guess your

timezone based on geographic IP address lookup. You can visit http://

worldtimeapi.org/timezones (https://adafru.it/EcP) to see all the time zones available

(even though we do not use worldtimeapi for time-keeping we do use the same time

zone table)

Step 4) Upload Test Python Code

This code is like the Internet Test code from before, but this time it will connect to

adafruit.io and get the local time

import ipaddress

import ssl

import wifi

©Adafruit Industries Page 17 of 25

http://worldtimeapi.org/timezones
http://worldtimeapi.org/timezones

import socketpool

import adafruit_requests

import secrets

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

JSON_QUOTES_URL = "https://www.adafruit.com/api/quotes.php"

JSON_STARS_URL = "https://api.github.com/repos/adafruit/circuitpython"

Get wifi details and more from a secrets.py file

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

Get our username, key and desired timezone

aio_username = secrets["aio_username"]

aio_key = secrets["aio_key"]

location = secrets.get("timezone", None)

TIME_URL = "https://io.adafruit.com/api/v2/%s/integrations/time/strftime?x-aio-

key=%s" % (aio_username, aio_key)

TIME_URL += "&fmt=%25Y-%25m-%25d+%25H%3A%25M%3A%25S.%25L+%25j+%25u+%25z+%25Z"

print("ESP32-S2 Adafruit IO Time test")

print("My MAC addr:", [hex(i) for i in wifi.radio.mac_address])

print("Available WiFi networks:")

for network in wifi.radio.start_scanning_networks():

 print("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),

 network.rssi, network.channel))

wifi.radio.stop_scanning_networks()

print("Connecting to %s"%secrets["ssid"])

wifi.radio.connect(secrets["ssid"], secrets["password"])

print("Connected to %s!"%secrets["ssid"])

print("My IP address is", wifi.radio.ipv4_address)

ipv4 = ipaddress.ip_address("8.8.4.4")

print("Ping google.com: %f ms" % wifi.radio.ping(ipv4))

pool = socketpool.SocketPool(wifi.radio)

requests = adafruit_requests.Session(pool, ssl.create_default_context())

print("Fetching text from", TIME_URL)

response = requests.get(TIME_URL)

print("-" * 40)

print(response.text)

print("-" * 40)

After running this, you will see something like the below text. We have blocked out

the part with the secret username and key data!

Note at the end you will get the date, time, and your timezone! If so, you have

correctly configured your secrets.py and can continue to the next steps!

©Adafruit Industries Page 18 of 25

MagTag-Specific CircuitPython Libraries

To use all the amazing features of your MagTag with CircuitPython, you must first

install a number of libraries. This page covers that process.

Get Latest Adafruit CircuitPython Bundle

Download the Adafruit CircuitPython Library Bundle. You can find the latest release

here:

Download the latest Library Bundle

from circuitpython.org

https://adafru.it/ENC

Download the adafruit-circuitpython-bundle-version-mpy-*.zip bundle zip file, and

unzip a folder of the same name. Inside you'll find a lib folder. The entire collection of

libraries is too large to fit on the CIRCUITPY drive. Therefore, you'll need to copy the

necessary libraries to your board individually.

At a minimum, the following libraries are required. Copy the following folders or .mpy

files to the lib folder on your CIRCUITPY drive. If the library is a folder, copy the entire

folder to the lib folder on your board.

Library folders (copy the whole folder over to lib):

adafruit_magtag - This is a helper library designed for using all of the features of

the MagTag, including networking, buttons, NeoPixels, etc.

adafruit_portalbase - This library is the base library that adafruit_magtag is built

on top of.

adafruit_bitmap_font - There is fancy font support, and it's easy to make new

fonts. This library reads and parses font files.

adafruit_display_text - This library displays text on the screen.

adafruit_io - This library helps connect the MagTag to our free data logging and

viewing service

Library files:

adafruit_requests.mpy - This library allows us to perform HTTP requests and get

responses back from servers. GET/POST/PUT/PATCH - they're all in here!

•

•

•

•

•

•

©Adafruit Industries Page 19 of 25

https://circuitpython.org/libraries

adafruit_fakerequests.mpy - This library allows you to create fake HTTP

requests by using local files.

adafruit_miniqr.mpy - QR creation library lets us add easy-to-scan 2D barcodes

to the E-Ink display

neopixel.mpy - This library is used to control the onboard NeoPixels.

simpleio.mpy - This library is used for tone generation.

Secrets

Even if you aren't planning to go online with your MagTag, you'll need to have a secre

ts.py file in the root directory (top level) of your CIRCUITPY drive. If you do not intend

to connect to wireless, it does not need to have valid data in it. Here's more info on

the secrets.py file (https://adafru.it/P3b).

Code the Kitchen Timer

Installing the Project Code

Download a zip of the project by clicking 'Download: Project Zip' in the preview of co

de.py below.

After unzipping the file, copy its contents to the CIRCUITPY drive which appears when

the MagTag is connected to your computer via a USB cable and turned on via a small

on/off switch onboard.

•

•

•

•

©Adafruit Industries Page 20 of 25

https://learn.adafruit.com/adafruit-magtag/internet-connect
https://learn.adafruit.com/adafruit-magtag/internet-connect

After you've copied everything over, this

is what the CIRCUITPY drive should look

like.

import time

import terminalio

from adafruit_magtag.magtag import MagTag

magtag = MagTag()

magtag.peripherals.neopixel_disable = False

magtag.add_text(

 text_font=terminalio.FONT,

 text_position=(140, 55),

 text_scale=7,

 text_anchor_point=(0.5, 0.5),

)

magtag.set_text("00:00")

Function that makes the neopixels display the seconds left

def update_neopixels(seconds):

 n = seconds // 15

 for j in range(n):

 magtag.peripherals.neopixels[3 - j] = (128, 0, 0)

 magtag.peripherals.neopixels[3 - n] = (int(((seconds / 15) % 1) * 128), 0, 0)

alarm_set = False

while True:

 if not alarm_set:

 # Set the timer to 1 minute

 if magtag.peripherals.button_a_pressed:

 alarm_time = 60

 alarm_set = True

 start = time.time()

 magtag.set_text("01:00")

©Adafruit Industries Page 21 of 25

https://learn.adafruit.com//assets/98010
https://learn.adafruit.com//assets/98010
https://learn.adafruit.com//assets/98012
https://learn.adafruit.com//assets/98012

 last_set = 60

 magtag.peripherals.neopixels.fill((128, 0, 0))

 # Set the timer to 5 minutes

 elif magtag.peripherals.button_b_pressed:

 alarm_time = 300

 alarm_set = True

 start = time.time()

 magtag.set_text("05:00")

 last_set = 300

 magtag.peripherals.neopixels.fill((128, 0, 0))

 # Set the timer to 20 minutes

 elif magtag.peripherals.button_c_pressed:

 alarm_time = 1200

 alarm_set = True

 start = time.time()

 magtag.set_text("20:00")

 last_set = 1200

 magtag.peripherals.neopixels.fill((128, 0, 0))

 else:

 time.sleep(1)

 remaining = alarm_time - (time.time() - start)

 if (remaining < 0):

 remaining = 0

 print(remaining)

 if remaining == 0:

 magtag.peripherals.neopixels.fill((255, 0, 0))

 # Play alarm and flash neopixels to indicate the timer is done

 for i in range(2):

 magtag.peripherals.neopixels.fill((255, 0, 0))

 magtag.peripherals.play_tone(3000, 0.5)

 magtag.peripherals.neopixels.fill((0, 0, 0))

 time.sleep(0.1)

 magtag.peripherals.neopixels.fill((255, 0, 0))

 magtag.peripherals.play_tone(3000, 0.5)

 magtag.peripherals.neopixels.fill((0, 0, 0))

 time.sleep(0.5)

 alarm_set = False

 magtag.set_text("00:00")

 last_set = 0

 continue

 update_neopixels(remaining % 60)

 if remaining % 60 == 0 and remaining != last_set:

 magtag.set_text("{:02d}:00".format(remaining // 60))

 last_set = remaining

 # Reset the timer

 if magtag.peripherals.button_d_pressed:

 time.sleep(0.1)

 magtag.peripherals.neopixels.fill((0, 0, 0))

 time.sleep(0.1)

 magtag.peripherals.neopixels.fill((255, 0, 0))

 time.sleep(0.1)

 magtag.peripherals.neopixels.fill((0, 0, 0))

 time.sleep(0.1)

 alarm_set = False

 magtag.set_text("00:00")

Be sure you have the libraries and secrets.py file complete and loaded onto the

CIRCUITPY drive also or the code will not run properly.

©Adafruit Industries Page 22 of 25

Code Behavior

I'll quickly explain how to use this because I recognize it may not be too obvious at

first. To set an alarm, press one of the first three buttons. The first button sets a 1-

minute alarm, the second one sets a 5-minute alarm, and the third one sets a 20-

minute alarm, but you can change these values by making a few small edits in the

code that I'll explain in the 'Code Run Through' section. The fourth button stops the

current alarm, allowing the user to set a new one.

When the code is running, the number of minutes left will be displayed on the display.

However, this only updates once a minute so the built-in NeoPixels are also used as

indicators for the seconds. Each NeoPixel represents 15 seconds, so if there are 3

NeoPixels lit and the display says "05:00", there is between 5:30 and 5:45 left on the

timer. The NeoPixel furthest to the right that is still illuminated will slowly dim so that

at the end of the 15 seconds that it is indicating it will turn off.

Code Run Through

First, the code imports the required libraries.

import time

import terminalio

from adafruit_magtag.magtag import MagTag

Then, the code initializes the MagTag object and makes sure built-in NeoPixels are

enabled.

magtag = MagTag()

magtag.peripherals.neopixel_disable = False

After that, the text object is added to the center of the display and it is set to "00:00."

magtag.add_text(

 text_font=terminalio.FONT,

 text_position=(140, 55),

 text_scale=7,

 text_anchor_point=(0.5, 0.5),

)

magtag.set_text("00:00")

Now, the code defines a function, update_neopixels . This function takes the

amount of seconds left in the current minute (so if there were 5 minutes and 33

©Adafruit Industries Page 23 of 25

seconds left in the timer, the function would be given 33) and dims one NeoPixel at a

time. At 59 seconds, all 4 NeoPixels are fully illuminated. At 46 seconds, the NeoPixel

furthest to the right is almost completely out but the other three are still fully

illuminated, and when this function is given 45 seconds, it will turn the fourth NeoPixel

off and start dimming the third one.

def update_neopixels(seconds):

 n = seconds // 15

 for j in range(n):

 magtag.peripherals.neopixels[3 - j] = (128, 0, 0)

 magtag.peripherals.neopixels[3 - n] = (int(((seconds / 15) % 1) * 128), 0, 0)

At this point, the main loop starts. It first checks to see if an alarm is currently active. If

there isn't an active alarm, it starts scanning to see if a button is pressed. If button a,

b, or c (first three buttons, going left to right) is pressed, it then activates an alarm and

sets a few variables that make keeping track of the alarm easier.

If you want to change the time an alarm lasts, change alarm_time , the string in mag

tag.set_text , and last_set .

alarm_set = False

while True:

 if not alarm_set:

 # Set the timer to 1 minute

 if magtag.peripherals.button_a_pressed:

 alarm_time = 60

 alarm_set = True

 start = time.time()

 magtag.set_text("01:00")

 last_set = 60

 magtag.peripherals.neopixels.fill((128, 0, 0))

 # Set the timer to 5 minutes

 elif magtag.peripherals.button_b_pressed:

 alarm_time = 300

 alarm_set = True

 start = time.time()

 magtag.set_text("05:00")

 last_set = 300

 magtag.peripherals.neopixels.fill((128, 0, 0))

 # Set the timer to 20 minutes

 elif magtag.peripherals.button_c_pressed:

 alarm_time = 1200

 alarm_set = True

 start = time.time()

 magtag.set_text("20:00")

 last_set = 1200

 magtag.peripherals.neopixels.fill((128, 0, 0))

This next part of the loop only gets executed when alarm_set is True , that is to

say when an alarm is active. It starts by printing out the time left in the alarm (in

seconds) to the serial console. Then, if the time remaining has reached zero, it plays

an alarm through the speaker and flashes the NeoPixels on and off a few times to

©Adafruit Industries Page 24 of 25

indicate that the alarm is done. Next, it sets the necessary variables to indicate that an

alarm isn't set.

else:

 �￰time.sleep(1)

 remaining = alarm_time - (time.time() - start)

 if (remaining < 0):

 �￰remaining = 0

 print(remaining)

 if remaining == 0:

 magtag.peripherals.neopixels.fill((255, 0, 0))

 # Play alarm and flash neopixels to indicate the timer is done

 for i in range(2):

 magtag.peripherals.neopixels.fill((255, 0, 0))

 magtag.peripherals.play_tone(3000, 0.5)

 magtag.peripherals.neopixels.fill((0, 0, 0))

 time.sleep(0.1)

 magtag.peripherals.neopixels.fill((255, 0, 0))

 magtag.peripherals.play_tone(3000, 0.5)

 magtag.peripherals.neopixels.fill((0, 0, 0))

 time.sleep(0.5)

 alarm_set = False

 magtag.set_text("00:00")

 last_set = 0

 continue

If there is still time left in the alarm, update_neopixels is called. The code then

checks to see if there is a whole number of minutes left and if there is, updates the

display to reflect that.

update_neopixels(remaining % 60)

if remaining % 60 == 0 and remaining != last_set:

 magtag.set_text("{:02d}:00".format(remaining // 60))

 last_set = remaining

Finally, the code checks to see if button D (furthest to the right) is being pressed. If it

is, it flashes the NeoPixels a few times and resets the alarm.

Reset the timer

if magtag.peripherals.button_d_pressed:

 time.sleep(0.1)

 magtag.peripherals.neopixels.fill((0, 0, 0))

 time.sleep(0.1)

 magtag.peripherals.neopixels.fill((255, 0, 0))

 time.sleep(0.1)

 magtag.peripherals.neopixels.fill((0, 0, 0))

 time.sleep(0.1)

 alarm_set = False

 magtag.set_text("00:00")

©Adafruit Industries Page 25 of 25

	Adafruit MagTag Kitchen Timer
	Table of Contents
	Overview
	Install CircuitPython
	CircuitPython Internet Libraries
	CircuitPython Internet Test
	Getting The Date & Time
	MagTag-Specific CircuitPython Libraries
	Code the Kitchen Timer

	Overview
	Parts

	Install CircuitPython
	Set Up CircuitPython

	Option 1 - Load with UF2 Bootloader
	Try Launching UF2 Bootloader

	Option 2 - Use esptool to load BIN file
	Option 3 - Use Chrome Browser To Upload BIN file
	CircuitPython Internet Libraries
	Adafruit CircuitPython Library Bundle

	CircuitPython Internet Test
	Secrets File
	Connect to WiFi

	Getting The Date & Time
	Step 1) Make an Adafruit account
	Step 2) Sign into Adafruit IO
	Step 3) Get your Adafruit IO Key
	Step 4) Upload Test Python Code

	MagTag-Specific CircuitPython Libraries
	Get Latest Adafruit CircuitPython Bundle
	Secrets

	Code the Kitchen Timer
	Installing the Project Code
	Code Behavior
	Code Run Through

