For many microcontrollers, adding audio input is easy with one of our analog microphone breakouts (http://adafruit.it/1063). But as you get to bigger and better microcontrollers and microcomputers, you'll find that you don't always have an analog input, or maybe you want to avoid the noise that can seep in with an analog mic system. Once you get past 8-bit micros, you will often find an I2S peripheral, that can take digital audio data in! That's where this I2S Microphone Breakout comes in.

Instead of an analog output, there are three digital pins: Clock, Data and Word-Select. When connected to your microcontroller/computer, the 'I2S Master' will drive the clock and word-select pins at a high frequency and read out the data from the microphone. No analog conversion required!
The microphone is a single mono element. You can select whether you want it to be on the Left or Right channel by connecting the Select pin to power or ground. If you have two microphones, you can set them up to be stereo by sharing the Clock, WS and Data lines but having one with Select to ground, and one with Select to high voltage.

This I2S MEMS microphone is bottom ported, so make sure you have the hole in the bottom facing out towards the sounds you want to read. It's a 1.6-3.3V device only, so not for use with 5V logic (its really unlikely you'd have a 5V-logic device with I2S anyways). Many beginner microcontroller boards *don't* have I2S, so make sure its a supported interface before you try to wire it up! This microphone is best used with Cortex M-series chips like the Arduino Zero, Feather M0, or single-board computers like the Raspberry Pi.
Assembly

Assembly is really easy, you can use straight or 'right-angle' style headers to attach to the PCB. We'll be using the plain straight headers included.

The board comes with all surface-mount components pre-soldered. The included header strip can be soldered on for convenient use on a breadboard or with 0.1" connectors. You can also skip this step and solder on wires.

Prepare the header strip:
Cut the strip to length if necessary. It will be easier to solder if you insert it into a breadboard - long pins down.

Add the breakout board:
Place the breakout board over the pins so that the short pins poke through the breakout pads.

Make sure the side with the components is face down, as shown in the photos in this guide!
And Solder!
Be sure to solder all 5 pins for reliable electrical contact.

(For tips on soldering, be sure to check out our Guide to Excellent Soldering (https://adafruit.it/aTk)).
You're done! Check your solder joints visually and continue onto the next steps.
Pinouts

Unlike most of our breakouts, this sensor has the detection element on the **bottom** of the PCB, so we expect you to solder it 'upside down' with the sensor package on the bottom and the port on top!

![I2S Mic Image]

Power Pins

- **3V** - this is the power in pin. Technically it can be powered from as low as 1.6V to 3.6V but you'll need to make sure your logic level matches!
- **GND** - power and data ground

I2S Data Pins

- **BCLK** - the bit clock, also known as the data clock or just 'clock' - comes from the I2S master to tell the microphone its time to transmit data. This should run at 2-4 MHz but we've found you can often run it a little slower and it'll work fine
- **DOUT** - the data output from the mic!
- **LRCLK** - the left/right clock, also known as **WS** (word select), this tells the mic when to start transmitting. When **LRCLK** is low, the left channel will transmit. When **LRCLK** is high, the right channel will transmit.
- **SEL** - the channel select pin. By default this pin is low, so that it will transmit on the left channel mono. If you connect this to high logic voltage, the microphone will instantly start transmitting on the right channel.
Arduino Wiring & Test

Remember, the I2S microphone requires an I2S peripheral and won't work with chips that don't support it in hardware! For this example we'll use a Feather M0, but you can also use an Arduino Zero.

Wiring

For Feather M0, Arduino Zero and friends, use the following wiring:

- **GND** connected GND
- **3.3V** connected 3.3V (Feather, Zero) or VCC (MKR1000, MKRZero)
- **LRCLK / WS** connected to pin 0 (Feather, Zero) or pin 3 (MKR1000, MKRZero)
- **BCLK** connected to pin 1 (Feather, Zero) or pin 2 (MKR1000, MKRZero)
- **Data /SD** connected to pin 9 (Zero) or pin A6 (MKR1000, MKRZero)

You can leave **Select** disconnected

![Wiring Diagram](https://adafruit.com/circuitpython/lesson/0.png)

I2S Library

Luckily, there's a nice little I2S library already written for Arduinos based on the SAMD processor. Make sure you have the most recent Arduino IDE and SAMD core. Then select the board you're using (e.g. Adafruit Feather M0) and you'll see the I2S library examples show up in the pulldown menu.
You could try the InputPlotter demo but this code is higher resolution:
/*
This example reads audio data from an I2S microphone breakout board, and prints out the samples to the Serial console. The Serial Plotter built into the Arduino IDE can be used to plot the audio data (Tools -> Serial Plotter)

Circuit:
* Arduino/Genuino Zero, MKRZero or MKR1000 board
 * GND connected GND
* 3.3V connected 3.3V (Zero) or VCC (MKR1000, MKRZero)
* WS connected to pin 0 (Zero) or pin 3 (MKR1000, MKRZero)
* CLK connected to pin 1 (Zero) or pin 2 (MKR1000, MKRZero)
* SD connected to pin 9 (Zero) or pin A6 (MKR1000, MKRZero)

created 17 November 2016
by Sandeep Mistry
*/

#include <I2S.h>

void setup() {
 // Open serial communications and wait for port to open:
 // A baud rate of 115200 is used instead of 9600 for a faster data rate
 // on non-native USB ports
 Serial.begin(115200);
 while (!Serial) {
 ; // wait for serial port to connect. Needed for native USB port only
 }

 // start I2S at 16 kHz with 32-bits per sample
 if (!I2S.begin(I2S_PHILIPS_MODE, 16000, 32)) {
 Serial.println("Failed to initialize I2S!");
 while (1); // do nothing
 }
}

void loop() {
 // read a sample
 int sample = I2S.read();

 if ((sample == 0) || (sample == -1)) {
 return;
 }
 // convert to 18 bit signed
 sample >>= 14;
 // if it's non-zero print value to serial
 Serial.println(sample);
}

Upload to your Arduino Zero/Feather wired up as above, and open up the Serial Plotter
Try blowing or whistling at the sensor to see response in real time

VU Meter Demo

Often times you don't want the actual audio data but the overall "sound pressure level". This example will take a bunch of samples, normalize the data to be around 0, then give you the maximum difference between the waveforms for a 'volume graph'

```c
/*
 * This example reads audio data from an Invensense's ICS43432 I2S microphone
 * breakout board, and prints out the samples to the Serial console. The
 * Serial Plotter built into the Arduino IDE can be used to plot the audio
 * data (Tools -> Serial Plotter)
 *
 * Circuit:
 * * Arduino/Genuino Zero, MKRZero or MKR1000 board
 * * ICS43432:
 * * 3.3V connected GND
 * * GND connected 3.3V (Zero) or VCC (MKR1000, MKRZero)
 * * WS connected to pin 0 (Zero) or pin 3 (MKR1000, MKRZero)
 * * CLK connected to pin 1 (Zero) or pin 2 (MKR1000, MKRZero)
 * * SD connected to pin 9 (Zero) or pin A6 (MKR1000, MKRZero)
 */
```

created 17 November 2016
#include <I2S.h>

void setup() {
 // Open serial communications and wait for port to open:
 // A baud rate of 115200 is used instead of 9600 for a faster data rate
 // on non-native USB ports
 Serial.begin(115200);
 while (!Serial) {
 ; // wait for serial port to connect. Needed for native USB port only
 }

 // start I2S at 16 kHz with 32-bit per sample
 if (!I2S.begin(I2S_PHILIPS_MODE, 16000, 32)) {
 Serial.println("Failed to initialize I2S!");
 while (1); // do nothing
 }
}

#define SAMPLES 128 // make it a power of two for best DMA performance

void loop() {
 // read a bunch of samples:
 int samples[SAMPLES];

 for (int i=0; i<SAMPLES; i++) {
 int sample = 0;
 while ((sample == 0) || (sample == -1)) {
 sample = I2S.read();
 }
 // convert to 16 bit signed
 sample >>= 14;
 samples[i] = sample;
 }

 // ok we have the samples, get the mean (avg)
 float meanval = 0;
 for (int i=0; i<SAMPLES; i++) {
 meanval += samples[i];
 }
 meanval /= SAMPLES;
 //Serial.print("# average: "); Serial.println(meanval);

 // subtract it from all samples to get a 'normalized' output
 for (int i=0; i<SAMPLES; i++) {
 samples[i] -= meanval;
 //Serial.println(samples[i]);
 }

 // find the 'peak to peak' max
 float maxsample, minsample;
 minsample = 1000000;
 maxsample = -1000000;
 for (int i=0; i<SAMPLES; i++) {
 minsample = min(minsample, samples[i]);
 maxsample = max(maxsample, samples[i]);
 }
 Serial.println(maxsample - minsample);
Open up the serial plotter to see how making noises will create peaks!

Serial.println(maxsample - minsample);
}

ArduinoSound Library

For most uses, it's better to have a higher-level library for managing sound. The ArduinoSound library works with I2S mics and can do filtering, amplitude detection, etc!

Install it using the Arduino library manager

Various examples come with the library, check them out in the File->Examples->ArduinoSound sub menu
For example, amplitude Serial plotter will do basic amplitude plotting:

You can also do FFT spectral diagramming using SpectrumSerialPlotter. We made a small change to the example so that all 128 bins are plotted:
if (!fftAnalyzer.input(AudioInI2S)) {
 Serial.println("Failed to set FFT analyzer input!");
 while (1); // do nothing
}

void loop() {
 // check if a new analysis is available
 if (fftAnalyzer.available()) {
 // read the new spectrum
 fftAnalyzer.read(spectrum, spectrumSize);
 // print out the spectrum
 for (int i = 0; i < spectrumSize; i++) {
 //Serial.print((i * sampleRate) / ffsSize); // the starting frequency
 Serial.print(spectrum[i]); // the spectrum value
 }
 Serial.println();
 }
}

COM09 (Adafruit Feather M0) (Native USB Port)
You can add mono or stereo I2S microphones to your Raspberry Pi, too!

This will work with Raspberry Pi B+, 2, 3, Zero and any other 2x20-connector-Pi

This guide is largely based on this great git repo https://github.com/nejohnson2/rpi-i2s

Wiring For Mono Mic

- Mic 3V - Pi 3.3v
- Mic Gnd - Pi Gnd
- Mic SEL - Pi Gnd (this is used for channel selection. Connect to 3.3 or GND)
- Mic BCLK - BCM 18 (pin 12)
- Mic LRCL - BCM 19 (pin 35)
- Mic DOUT - BCM 20 (pin 38)

Wiring For Stereo Mic
Raspberry Pi i2s Configuration

Start by logging into your Raspberry Pi via a terminal, we recommend ssh so you can copy + paste the many commands.

Turn on i2s support by editing `/boot/config.txt` with:

```
sudo nano /boot/config.txt
```

Uncomment `#dtparam=i2s=on`
Next, we'll make sure sound support is enabled in the kernel with:

```
sudo nano /etc/modules
```

Add `snd-bcm2835` on its own line, to the modules file as shown below

Now reboot your pi with:
Once rebooted, re-log in.

Enter the following to confirm the modules are loaded

```
lsmod | grep snd
```

Kernel Compiling

Ok now its time for the *fun* part! You'll manually compile in i2s support.

Start by updating your Pi:

```
sudo apt-get update
sudo apt-get install rpi-update
sudo rpi-update
```

Then reboot!

Install the compilation dependencies:

```
sudo apt-get install git bc libncurses5-dev bison flex libssl-dev
```

Download kernel source & compile:
On a Pi 3 this will take many many minutes, so don't worry if its taking 15 minutes. On a Pi Zero it can take an hour or longer!

If the script pauses at this prompt:

- Code coverage for fuzzing (KCOV) [N/y/?] (NEW)

Just press enter to accept the default and continue.

Prepare to Compile the i2s module

Now you're ready to compile i2s support:

```bash
sudo mount -t debugfs debugs /sys/kernel/debug
```

This may already be done - **mount: debugs is already mounted** - in which case keep going

If you are using Pi 3 or Pi 2 - make sure the module name is `3f203000.i2s`

If you are using Pi Zero - the module name is `20203000.i2s`

Run `rpi-i2s-audio`

Download the module, written by [Paul Creaser](https://adafru.it/vkd)
If you are using a Raspberry Pi Zero, edit `my_loader.c` with `nano my_loader.c` and change the two lines

```c
.platform = "3f203000.i2s",
```
and

```c
.name = "3f203000.i2s",
```
with

```c
.platform = "20203000.i2s",
```
and

```c
.name = "20203000.i2s",
```

If you aren’t using a Pi Zero, continue on!

Compile the module with

```bash
git clone https://github.com/PaulCreaser/rpi-i2s-audio
cd rpi-i2s-audio
make -C /lib/modules/$(uname -r) /build M=$(pwd) modules
```

```bash
sudo insmod my_loader.ko
```

Verify that the module was loaded:

```bash
lsmod | grep my_loader
dmesg | tail
```
Note that on the Pi 2/3 you'll see `asoc-simple-card asoc-simple-card.0: snd-soc-dummy-dai <-> 3F203000.i2s mapping ok` on the last line and on Pi Zero you'll see `asoc-simple-card asoc-simple-card.0: snd-soc-dummy-dai <-> 20203000.i2s mapping ok`

Auto-load the module on startup

Now you can set it up so the module is loaded every time you boot the Pi

```
sudo cp my_loader.ko /lib/modules/$(uname -r)
echo 'my_loader' | sudo tee --append /etc/modules > /dev/null
sudo depmod -a
sudo modprobe my_loader
```

And reboot!

```
sudo reboot
```

Test & Record!

OK that was a lot of effort but now you are ready to rock!

Use the following command to list the available input devices:

```
arecord -l
```

you should see a `snd_rpi_simple_card`
You can record a .wav file in mono with this command:

```
arecord -D plughw:1 -c1 -r 48000 -f S32_LE -t wav -V mono -v file.wav
```

Or, if you have two i2s mics installed, record in stereo with this command:

```
arecord -D plughw:1 -c2 -r 48000 -f S32_LE -t wav -V stereo -v file_stereo.wav
```

If all is working correctly, you should see the VU meter react at the bottom of the terminal window.

Test Playback

If you have speakers hooked up to the Pi, you can play the file back directly on the device:

```
aplay file.wav
```

Or, you can copy it over to your computer for playback ;), just insert your Pi's IP address below:

```
scp pi@<local-ip>:~/home/pi/file.wav ~/Desktop/file.wav
```

Adding Volume control

You can add volume control to your mine via alsamixer and alsa config. (Hat tip to RickTracer [https://adafruit.it/doW])

Run `sudo nano ~/.asoundrc`

and put the following in:
Now before you can change the volume you need to use the device once (this is an alsा thing)

```bash
# This section makes a reference to your I2S hardware, adjust the card name
# to what is shown in arecord -l after card x: before the name in []
# You may have to adjust channel count also but stick with default first

pcm.dmic_hw {
    type hw
    card sndrpisimplecar
    channels 2
    format S32_LE
}

# This is the software volume control, it links to the hardware above and after
# saving the .asoundrc file you can type alsamixer, press F6 to select
# your I2S mic then F4 to set the recording volume and arrow up and down
# to adjust the volume
# After adjusting the volume - go for 50 percent at first, you can do
# something like
# arecord -D dmic_sv -c2 -r 48000 -f S32_LE -t wav -V mono -v myfile.wav

pcm.dmic_sv {
    type softvol
    slave.pcm dmic_hw
    control {
        name "Boost Capture Volume"
        card sndrpisimplecar
    }
    min_dB -3.0
    max_dB 30.0
}
```

Now before you can change the volume you need to use the device once (this is an alsा thing)

Run
And cancel with ^C once it starts recording.

Now you can run `alsamixer` - press F6 and select the I2S simple sound card

![Mixer Screen](image)

It will complain there are no playback controls (because its for recording only).

Press F5 to change the volume.

![Mixer Volume](image)

Then you can record with the i2c mic device using

```bash
arecord -D dmic_sv -c2 -r 48100 -f S32_LE -t wav -V mono -v file.wav
```

```bash
arecord -D dmic_sv -c2 -r 44100 -f S32_LE -t wav -V mono -v file.wav
```
and playback with

```bash
aplay recording.wav
```
Downloads

Files

- EagleCAD PCB Files on GitHub (https://adafru.it/uyb)
- Fritzing object in the Adafruit Fritzing library (https://adafru.it/aP3)

Schematic & Fab Print