
Adafruit Feather M0 Express
Created by lady ada

https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Last updated on 2024-03-08 02:10:59 PM EST

©Adafruit Industries Page 1 of 259

9

11

16

25

30

32

40

Table of Contents

Overview

Pinouts
• Power Pins
• Logic pins
• SPI Flash and NeoPixel
• Other Pins!
• Debug Interface

Assembly
• Header Options!
• Soldering in Plain Headers
• Prepare the header strip:
• Add the breakout board:
• And Solder!
• Soldering on Female Header
• Tape In Place
• Flip & Tack Solder
• And Solder!

Power Management
• Battery + USB Power
• Power Supplies
• Measuring Battery
• ENable pin
• Alternative Power Options

Arduino IDE Setup

Using with Arduino IDE
• Install SAMD Support
• Install Adafruit SAMD
• Install Drivers (Windows 7 & 8 Only)
• Blink
• Successful Upload
• Compilation Issues
• Manually bootloading
• Ubuntu & Linux Issue Fix

Adapting Sketches to M0 & M4
• Analog References
• Pin Outputs & Pullups
• Serial vs SerialUSB
• AnalogWrite / PWM on Feather/Metro M0
• analogWrite() PWM range
• analogWrite() DAC on A0
• Missing header files
• Bootloader Launching
• Aligned Memory Access
• Floating Point Conversion
• How Much RAM Available?

©Adafruit Industries Page 2 of 259

48

56

61

63

66

68

73

76

79

83

• Storing data in FLASH
• Pretty-Printing out registers
• M4 Performance Options
• CPU Speed (overclocking)
• Optimize
• Cache
• Max SPI and Max QSPI
• Enabling the Buck Converter on some M4 Boards

Using SPI Flash
• Read & Write CircuitPython Files
• Format Flash Memory
• Datalogging Example
• Reading and Printing Files
• Full Usage Example
• Accessing SPI Flash

Feather HELP!

What is CircuitPython?
• CircuitPython is based on Python
• Why would I use CircuitPython?

CircuitPython
• Set up CircuitPython Quick Start!
• Further Information

Installing the Mu Editor
• Download and Install Mu
• Starting Up Mu
• Using Mu

Creating and Editing Code
• Creating Code
• Editing Code
• Back to Editing Code...
• Naming Your Program File

Connecting to the Serial Console
• Are you using Mu?
• Serial Console Issues or Delays on Linux
• Setting Permissions on Linux
• Using Something Else?

Interacting with the Serial Console

The REPL
• Entering the REPL
• Interacting with the REPL
• Returning to the Serial Console

CircuitPython Libraries
• The Adafruit Learn Guide Project Bundle
• The Adafruit CircuitPython Library Bundle
• Downloading the Adafruit CircuitPython Library Bundle

©Adafruit Industries Page 3 of 259

94

100

120

• The CircuitPython Community Library Bundle
• Downloading the CircuitPython Community Library Bundle
• Understanding the Bundle
• Example Files
• Copying Libraries to Your Board
• Understanding Which Libraries to Install
• Example: ImportError Due to Missing Library
• Library Install on Non-Express Boards
• Updating CircuitPython Libraries and Examples
• CircUp CLI Tool

Frequently Asked Questions
• Using Older Versions
• Python Arithmetic
• Wireless Connectivity
• Asyncio and Interrupts
• Status RGB LED
• Memory Issues
• Unsupported Hardware

Troubleshooting
• Always Run the Latest Version of CircuitPython and Libraries
• I have to continue using CircuitPython 7.x or earlier. Where can I find compatible libraries?
• macOS Sonoma 14.x: Disk Errors Writing to CIRCUITPY
• Bootloader (boardnameBOOT) Drive Not Present
• Windows Explorer Locks Up When Accessing boardnameBOOT Drive
• Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
• CIRCUITPY Drive Does Not Appear or Disappears Quickly
• Device Errors or Problems on Windows
• Serial Console in Mu Not Displaying Anything
• code.py Restarts Constantly
• CircuitPython RGB Status Light
• CircuitPython 7.0.0 and Later
• CircuitPython 6.3.0 and earlier
• Serial console showing ValueError: Incompatible .mpy file
• CIRCUITPY Drive Issues
• Safe Mode
• To erase CIRCUITPY: storage.erase_filesystem()
• Erase CIRCUITPY Without Access to the REPL
• For the specific boards listed below:
• For SAMD21 non-Express boards that have a UF2 bootloader:
• For SAMD21 non-Express boards that do not have a UF2 bootloader:
• Running Out of File Space on SAMD21 Non-Express Boards
• Delete something!
• Use tabs
• On MacOS?
• Prevent & Remove MacOS Hidden Files
• Copy Files on MacOS Without Creating Hidden Files
• Other MacOS Space-Saving Tips
• Device Locked Up or Boot Looping

"Uninstalling" CircuitPython
• Backup Your Code
• Moving Circuit Playground Express to MakeCode
• Moving to Arduino

©Adafruit Industries Page 4 of 259

123

132

133

139

140

145

152

157

168

Welcome to the Community!
• Adafruit Discord
• CircuitPython.org
• Adafruit GitHub
• Adafruit Forums
• Read the Docs

CircuitPython Essentials

CircuitPython Pins and Modules
• CircuitPython Pins
• import board
• I2C, SPI, and UART
• What Are All the Available Names?
• Microcontroller Pin Names
• CircuitPython Built-In Modules

CircuitPython Built-Ins
• Thing That Are Built In and Work
• Flow Control
• Math
• Tuples, Lists, Arrays, and Dictionaries
• Classes, Objects and Functions
• Lambdas
• Random Numbers

CircuitPython Digital In & Out
• Find the pins!
• Read the Docs

CircuitPython Analog In
• Creating the analog input
• get_voltage Helper
• Main Loop
• Changing It Up
• Wire it up
• Reading Analog Pin Values

CircuitPython Analog Out
• Creating an analog output
• Setting the analog output
• Main Loop
• Find the pin

CircuitPython PWM
• PWM with Fixed Frequency
• Create a PWM Output
• Main Loop
• PWM Output with Variable Frequency
• Installing Project Code
• Wire it up
• Where's My PWM?

CircuitPython Servo
• Servo Wiring

©Adafruit Industries Page 5 of 259

174

179

185

192

199

206

215

• Standard Servo Code
• Continuous Servo Code

CircuitPython Cap Touch
• Create the Touch Input
• Main Loop
• Find the Pin(s)

CircuitPython Internal RGB LED
• Create the LED
• Brightness
• Main Loop
• Making Rainbows (Because Who Doesn't Love 'Em!)
• Circuit Playground Express Rainbow

CircuitPython NeoPixel
• Wiring It Up
• The Code
• Create the LED
• NeoPixel Helpers
• Main Loop
• NeoPixel RGBW
• The Code
• Read the Docs

CircuitPython DotStar
• Wire It Up
• The Code
• Create the LED
• DotStar Helpers
• Main Loop
• Is it SPI?
• Read the Docs

CircuitPython UART Serial
• The Code
• Wire It Up
• Where's my UART?
• Trinket M0: Create UART before I2C

CircuitPython I2C
• Wire It Up
• Find Your Sensor
• I2C Sensor Data
• Installing Project Code
• Where's my I2C?

CircuitPython HID Keyboard and Mouse
• CircuitPython Keyboard Emulator
• Create the Objects and Variables
• The Main Loop
• Non-US Keyboard Layouts
• CircuitPython Mouse Emulator
• Create the Objects and Variables
• CircuitPython HID Mouse Helpers

©Adafruit Industries Page 6 of 259

223

223

228

232

233

235

236

237

240

241

245

257

• Main Loop

CircuitPython CPU Temp

CircuitPython Storage
• boot.py
• Installing Project Code
• Logging the Temperature

CircuitPython Expectations
• Always Run the Latest Version of CircuitPython and Libraries
• I have to continue using CircuitPython 3.x or 2.x, where can I find compatible libraries?
• Switching Between CircuitPython and Arduino
• The Difference Between Express And Non-Express Boards
• Non-Express Boards: Gemma, Trinket, and QT Py
• Differences Between CircuitPython and MicroPython
• Differences Between CircuitPython and Python

MakeCode

What is MakeCode Maker?

Editing Blocks
• Blinky!

Editing JavaScript
• Blocks to JavaScript

Downloading and Flashing
• Step 1: Connect your board via USB
• Step 2: Test your code in the simulator
• Step 3: Download and flash your code

Saving and Sharing
• Extracting your code from the board
• Sharing

Custom Extensions
• Account setup
• Commit and push
• Conflicts
• Testing your package

UF2 Bootloader Details
• Entering Bootloader Mode
• Using the Mass Storage Bootloader
• Using the BOSSA Bootloader
• Running bossac on the command line
• Updating the bootloader
• Getting Rid of Windows Pop-ups
• Making your own UF2
• Installing the bootloader on a fresh/bricked board

Downloads
• Datasheets

©Adafruit Industries Page 7 of 259

• Firmware
• Schematic & Fabrication Print

©Adafruit Industries Page 8 of 259

Overview

We love all our Feathers equally, but this Feather is very special. It's our first Feather
that is specifically designed for use with CircuitPython! CircuitPython is our beginner-
oriented flavor of MicroPython - and as the name hints at, its a small but full-featured
version of the popular Python programming language specifically for use with circuitry
and electronics.

That doesn't mean you cant also use it with Arduino IDE! At the Feather M0's heart is
an ATSAMD21G18 ARM Cortex M0+ processor, clocked at 48 MHz and at 3.3V logic,
the same one used in the new Arduino Zero (http://adafru.it/2843). This chip has a
whopping 256K of FLASH (8x more than the Atmega328 or 32u4) and 32K of RAM

The Feather M0's SAMD21 is a very minimal chip for CircuitPython, at the time it
was the first board we designed that could use it but chips have gotten better
since then. To really have a good experience we recommend a Feather M4

©Adafruit Industries Page 9 of 259

https://www.adafruit.com/products/2843

(16x as much)! This chip comes with built in USB so it has USB-to-Serial program &
debug capability built in with no need for an FTDI-like chip.

You can also use MakeCode (https://adafru.it/C9N)'s block-based GUI coding on this
board.

Here's some handy specs!

Measures 2.0" x 0.9" x 0.28" (51mm x 23mm x 8mm) without headers soldered in
Light as a (large?) feather - 5 grams
ATSAMD21G18 @ 48MHz with 3.3V logic/power
256KB of FLASH + 32KB of RAM
No EEPROM
32.768 KHz crystal for clock generation & RTC
3.3V regulator with 500mA peak current output
USB native support, comes with USB bootloader and serial port debugging
You also get tons of pins - 20 GPIO pins
Hardware Serial, hardware I2C, hardware SPI support
PWM outputs on all pins
6 x 12-bit analog inputs
1 x 10-bit analog ouput (DAC)
Built in 100mA lipoly charger with charging status indicator LED
Pin #13 red LED for general purpose blinking
Power/enable pin
4 mounting holes
Reset button

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

©Adafruit Industries Page 10 of 259

https://maker.makecode.com/

The Feather M0 Express uses the extra space left over to add a Mini NeoPixel, 2 MB
SPI Flash storage and a little prototyping space. You can use the SPI Flash storage
like a very tiny hard drive. When used in Circuit Python, the 2 MB flash acts as storage
for all your scripts, libraries and files. When used in Arduino, you can read/write files
to it, like a little datalogger or SD card, and then with our helper program, access the
files over USB.

Comes fully assembled and tested, with a USB bootloader that lets you quickly use it
with the Arduino IDE or for loading Circuit Python. We also toss in some header so
you can solder it in and plug into a solderless breadboard.

Lipoly battery and USB cable not included (but we do have lots of options in the shop
if you'd like!)

Pinouts

©Adafruit Industries Page 11 of 259

The Feather M0 is chock-full of microcontroller goodness. There's also a lot of pins
and ports. We'll take you a tour of them now!

Click here to view a PDF version of the pinout diagram (https://adafru.it/Zwa)

Power Pins

GND - this is the common ground for all power and logic
BAT - this is the positive voltage to/from the JST jack for the optional Lipoly
battery
USB - this is the positive voltage to/from the micro USB jack if connected
EN - this is the 3.3V regulator's enable pin. It's pulled up, so connect to ground
to disable the 3.3V regulator
3V - this is the output from the 3.3V regulator, it can supply 500mA peak

•
•

•
•

•

©Adafruit Industries Page 12 of 259

https://github.com/adafruit/Adafruit-Feather-M0-Express-PCB/blob/master/Adafruit%20Feather%20M0%20Express%20pinout.pdf

Logic pins

This is the general purpose I/O pin set for the microcontroller.
All logic is 3.3V
Nearly all pins can do PWM output
All pins can be interrupt inputs

#0 / RX - GPIO #0, also receive (input) pin for Serial1 (hardware UART), also can
be analog input
#1 / TX - GPIO #1, also transmit (output) pin for Serial1, also can be analog input
SDA - the I2C (Wire) data pin. There's no pull up on this pin by default so when
using with I2C, you may need a 2.2K-10K pullup.
SCL - the I2C (Wire) clock pin. There's no pull up on this pin by default so when
using with I2C, you may need a 2.2K-10K pullup.
#5 - GPIO #5
#6 - GPIO #6
#9 - GPIO #9, also analog input A7. This analog input is connected to a voltage
divider for the lipoly battery so be aware that this pin naturally 'sits' at around
2VDC due to the resistor divider
#10 - GPIO #10
#11 - GPIO #11
#12 - GPIO #12
#13 - GPIO #13 and is connected to the red LED next to the USB jack
A0 - This pin is analog input A0 but is also an analog output due to having a
DAC (digital-to-analog converter). You can set the raw voltage to anything from 0
to 3.3V, unlike PWM outputs this is a true analog output
A1 thru A5 - These are each analog input as well as digital I/O pins.
SCK/MOSI/MISO - These are the hardware SPI pins, you can use them as
everyday GPIO pins (but recommend keeping them free as they are best used
for hardware SPI connections for high speed.)

•

•
•

•

•
•
•

•
•
•
•
•

•
•

©Adafruit Industries Page 13 of 259

These pins are available in CircuitPython under the board module. Names that start
with # are prefixed with D and other names are as is. So #0 / RX above is available as
board.D0 and board.RX for example.

SPI Flash and NeoPixel
As part of the 'Express' series of boards, this Feather is designed for use with
CircuitPython. To make that easy, we have added two extra parts to this Feather M0: a
mini NeoPixel (RGB LED) and a 2 MB SPI Flash chip

The NeoPixel is connected to pin #8 in Arduino, so just use our NeoPixel
library (https://adafru.it/dhw) and set it up as a single-LED strand on pin 8. The
NeoPixel is powered by the 3.3V power supply but that hasn't shown to make a big
difference in brightness or color. The NeoPixel is also used by the bootloader to let
you know if the device has enumerated correctly (green) or USB failure (red). In
CircuitPython, the LED is used to indicate the runtime status.

The SPI Flash is connected to 4 pins that are not brought out on the GPIO pads. This
way you don't have to worry about the SPI flash colliding with other devices on the
main SPI connection. Under Arduino, the FLASH SCK pin is #3, MISO is #2, MOSI is
#4, and CS is #38. If you use Feather M0 Express as your board type, you'll be able to
access the Flash SPI port under SPI1 - this is a fully new hardware SPI device separate
from the GPIO pins on the outside edge of the Feather. In CircuitPython, the SPI flash
is used natively by the interpretter and is read-only to user code, instead the Flash
just shows up as the writeable disk drive!

©Adafruit Industries Page 14 of 259

file:///home/adafruit-neopixel-uberguide
file:///home/adafruit-neopixel-uberguide

Other Pins!

RST - this is the Reset pin, tie to ground to manually reset the AVR, as well as
launch the bootloader manually
ARef - the analog reference pin. Normally the reference voltage is the same as
the chip logic voltage (3.3V) but if you need an alternative analog reference,
connect it to this pin and select the external AREF in your firmware. Can't go
higher than 3.3V!

Debug Interface

SWCLK & SWDIO - These pads on the bottom are used to program the chip.
They can also be connected to an SWD debugger.

•

•

•

©Adafruit Industries Page 15 of 259

Assembly
We ship Feathers fully tested but without headers attached - this gives you the most
flexibility on choosing how to use and configure your Feather

Header Options!
Before you go gung-ho on soldering, there's a few options to consider!

The first option is soldering in plain male
headers, this lets you plug in the Feather
into a solderless breadboard

©Adafruit Industries Page 16 of 259

https://learn.adafruit.com//assets/30192
https://learn.adafruit.com//assets/30192
https://learn.adafruit.com//assets/30201
https://learn.adafruit.com//assets/30201

Another option is to go with socket female
headers. This won't let you plug the
Feather into a breadboard but it will let
you attach featherwings very easily

A few Feather boards require access to
top-side components like buttons or
connectors, making stacking impractical.
Sometimes you can stack in the opposite
order—FeatherWing underneath—or, if
both Feather and Wing require top-side
access, place the boards side-by-side with
a FeatherWing Doubler (http://adafru.it/
2890) or Tripler (http://adafru.it/3417).

©Adafruit Industries Page 17 of 259

https://learn.adafruit.com//assets/30195
https://learn.adafruit.com//assets/30195
https://learn.adafruit.com//assets/30196
https://learn.adafruit.com//assets/30196
https://learn.adafruit.com//assets/117300
https://learn.adafruit.com//assets/117300
https://www.adafruit.com/product/2890
https://www.adafruit.com/product/3417

We also have 'slim' versions of the female
headers, that are a little shorter and give a
more compact shape

©Adafruit Industries Page 18 of 259

https://learn.adafruit.com//assets/30197
https://learn.adafruit.com//assets/30197
https://learn.adafruit.com//assets/30198
https://learn.adafruit.com//assets/30198

Finally, there's the "Stacking Header"
option. This one is sort of the best-of-both-
worlds. You get the ability to plug into a
solderless breadboard and plug a
featherwing on top. But its a little bulky

Soldering in Plain Headers

Prepare the header strip:
Cut the strip to length if necessary. It will
be easier to solder if you insert it into a
breadboard - long pins down

©Adafruit Industries Page 19 of 259

https://learn.adafruit.com//assets/30199
https://learn.adafruit.com//assets/30199
https://learn.adafruit.com//assets/30200
https://learn.adafruit.com//assets/30200
https://learn.adafruit.com//assets/30183
https://learn.adafruit.com//assets/30183

Add the breakout board:
Place the breakout board over the pins so
that the short pins poke through the
breakout pads

And Solder!
Be sure to solder all pins for reliable
electrical contact.

(For tips on soldering, be sure to check out
our Guide to Excellent Soldering (https://
adafru.it/aTk)).

©Adafruit Industries Page 20 of 259

https://learn.adafruit.com//assets/30184
https://learn.adafruit.com//assets/30184
https://learn.adafruit.com//assets/30185
https://learn.adafruit.com//assets/30185
https://learn.adafruit.com//assets/30186
https://learn.adafruit.com//assets/30186
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering

Solder the other strip as well.

©Adafruit Industries Page 21 of 259

https://learn.adafruit.com//assets/30187
https://learn.adafruit.com//assets/30187
https://learn.adafruit.com//assets/30188
https://learn.adafruit.com//assets/30188
https://learn.adafruit.com//assets/30189
https://learn.adafruit.com//assets/30189

You're done! Check your solder joints
visually and continue onto the next steps

Soldering on Female Header

Tape In Place
For sockets you'll want to tape them in
place so when you flip over the board they
don't fall out

©Adafruit Industries Page 22 of 259

https://learn.adafruit.com//assets/30190
https://learn.adafruit.com//assets/30190
https://learn.adafruit.com//assets/30203
https://learn.adafruit.com//assets/30203

Flip & Tack Solder
After flipping over, solder one or two
points on each strip, to 'tack' the header in
place

©Adafruit Industries Page 23 of 259

https://learn.adafruit.com//assets/30204
https://learn.adafruit.com//assets/30204
https://learn.adafruit.com//assets/30205
https://learn.adafruit.com//assets/30205
https://learn.adafruit.com//assets/30206
https://learn.adafruit.com//assets/30206

And Solder!
Be sure to solder all pins for reliable
electrical contact.

(For tips on soldering, be sure to check out
our Guide to Excellent Soldering (https://
adafru.it/aTk)).

©Adafruit Industries Page 24 of 259

https://learn.adafruit.com//assets/30207
https://learn.adafruit.com//assets/30207
https://learn.adafruit.com//assets/30208
https://learn.adafruit.com//assets/30208
https://learn.adafruit.com//assets/30209
https://learn.adafruit.com//assets/30209
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering

You're done! Check your solder joints
visually and continue onto the next steps

Power Management

©Adafruit Industries Page 25 of 259

https://learn.adafruit.com//assets/30210
https://learn.adafruit.com//assets/30210
https://learn.adafruit.com//assets/30211
https://learn.adafruit.com//assets/30211

Battery + USB Power
We wanted to make our Feather boards easy to power both when connected to a
computer as well as via battery.

There's two ways to power a Feather:

You can connect with a USB cable (just plug into the jack) and the Feather will
regulate the 5V USB down to 3.3V.
You can also connect a 4.2/3.7V Lithium Polymer (LiPo/LiPoly) or Lithium Ion
(LiIon) battery to the JST jack. This will let the Feather run on a rechargeable
battery.

When the USB power is powered, it will automatically switch over to USB for power,
as well as start charging the battery (if attached). This happens 'hot-swap' style so
you can always keep the LiPoly connected as a 'backup' power that will only get used
when USB power is lost.

The above shows the Micro USB jack (left), LiPoly JST jack (top left), as well as the
3.3V regulator and changeover diode (just to the right of the JST jack) and the LiPoly
charging circuitry (to the right of the Reset button).

There's also a CHG LED next to the USB jack, which will light up while the battery is
charging. This LED might also flicker if the battery is not connected, it's normal.

1.

2.

The JST connector polarity is matched to Adafruit LiPoly batteries. Using wrong
polarity batteries can destroy your Feather. Many customers try to save money
by purchasing Lipoly batteries from Amazon only to find that they plug them in
and the Feather is destroyed!

©Adafruit Industries Page 26 of 259

Power Supplies
You have a lot of power supply options here! We bring out the BAT pin, which is tied
to the LiPoly JST connector, as well as USB which is the +5V from USB if connected.
We also have the 3V pin which has the output from the 3.3V regulator. We use a
500mA peak regulator. While you can get 500mA from it, you can't do it continuously
from 5V as it will overheat the regulator.

It's fine for, say, powering an ESP8266 WiFi chip or XBee radio though, since the
current draw is 'spikey' & sporadic.

Measuring Battery
If you're running off of a battery, chances are you wanna know what the voltage is at!
That way you can tell when the battery needs recharging. LiPoly batteries are 'maxed
out' at 4.2V and stick around 3.7V for much of the battery life, then slowly sink down
to 3.2V or so before the protection circuitry cuts it off. By measuring the voltage you
can quickly tell when you're heading below 3.7V.

To make this easy we stuck a double-100K resistor divider on the BAT pin, and
connected it to D9 (a.k.a analog #7 A7).

The charge LED is automatically driven by the LiPoly charger circuit. It will try to
detect a battery and is expecting one to be attached. If there isn't one it may
flicker once in a while when you use power because it's trying to charge a (non-
existent) battery. It's not harmful, and it's totally normal!

©Adafruit Industries Page 27 of 259

In Arduino, you can read this pin's voltage, then double it, to get the battery voltage.

// Arduino Example Code

#define VBATPIN A7

float measuredvbat = analogRead(VBATPIN);
measuredvbat *= 2; // we divided by 2, so multiply back
measuredvbat *= 3.3; // Multiply by 3.3V, our reference voltage
measuredvbat /= 1024; // convert to voltage
Serial.print("VBat: "); Serial.println(measuredvbat);

For CircuitPython, we've written a get_voltage() helper function to do the math for
you. All you have to do is call the function, provide the pin and print the results.

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

import board
import analogio

vbat_voltage = analogio.AnalogIn(board.D9)

def get_voltage(pin):
return (pin.value * 3.3) / 65536 * 2

battery_voltage = get_voltage(vbat_voltage)
print("VBat voltage: {:.2f}".format(battery_voltage))

ENable pin
If you'd like to turn off the 3.3V regulator, you can do that with the EN(able) pin. Simply
tie this pin to Ground and it will disable the 3V regulator. The BAT and USB pins will
still be powered.

©Adafruit Industries Page 28 of 259

Alternative Power Options
The two primary ways for powering a feather are a 3.7/4.2V LiPo battery plugged into
the JST port or a USB power cable.

If you need other ways to power the Feather, here's what we recommend:

For permanent installations, a 5V 1A USB wall adapter (http://adafru.it/501) will
let you plug in a USB cable for reliable power
For mobile use, where you don't want a LiPoly, use a USB battery pack! (http://
adafru.it/1959)
If you have a higher voltage power supply, use a 5V buck converter (https://
adafru.it/DHs) and wire it to a USB cable's 5V and GND input (http://adafru.it/
3972)

Here's what you cannot do:

Do not use alkaline or NiMH batteries and connect to the battery port - this will
destroy the LiPoly charger and there's no way to disable the charger
Do not use 7.4V RC batteries on the battery port - this will destroy the board

The Feather is not designed for external power supplies - this is a design decision to
make the board compact and low cost. It is not recommended, but technically
possible:

Connect an external 3.3V power supply to the 3V and GND pins. Not
recommended, this may cause unexpected behavior and the EN pin will no
longer work. Also this doesn't provide power on BAT or USB and some
Feathers/Wings use those pins for high current usages. You may end up
damaging your Feather.

•

•

•

•

•

•

©Adafruit Industries Page 29 of 259

https://www.adafruit.com/product/501
https://www.adafruit.com/product/1959
https://www.adafruit.com/?q=5V%20buck
https://www.adafruit.com/product/3972

Connect an external 5V power supply to the USB and GND pins. Not
recommended, this may cause unexpected behavior when plugging in the USB
port because you will be back-powering the USB port, which could confuse or
damage your computer.

Arduino IDE Setup
The first thing you will need to do is to download the latest release of the Arduino
IDE. You will need to be using version 1.8 or higher for this guide

Arduino IDE Download
https://adafru.it/f1P

After you have downloaded and installed the latest version of Arduino IDE, you will
need to start the IDE and navigate to the Preferences menu. You can access it from
the File menu in Windows or Linux, or the Arduino menu on OS X.

A dialog will pop up just like the one shown below.

•

©Adafruit Industries Page 30 of 259

http://www.arduino.cc/en/Main/Software

We will be adding a URL to the new Additional Boards Manager URLs option. The list
of URLs is comma separated, and you will only have to add each URL once. New
Adafruit boards and updates to existing boards will automatically be picked up by the
Board Manager each time it is opened. The URLs point to index files that the Board
Manager uses to build the list of available & installed boards.

To find the most up to date list of URLs you can add, you can visit the list of third party
board URLs on the Arduino IDE wiki (https://adafru.it/f7U). We will only need to add
one URL to the IDE in this example, but you can add multiple URLS by separating
them with commas. Copy and paste the link below into the Additional Boards
Manager URLs option in the Arduino IDE preferences.

https://adafruit.github.io/arduino-board-index/
package_adafruit_index.json

©Adafruit Industries Page 31 of 259

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls
https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls

Here's a short description of each of the Adafruit supplied packages that will be
available in the Board Manager when you add the URL:

Adafruit AVR Boards - Includes support for Flora, Gemma, Feather 32u4,
ItsyBitsy 32u4, Trinket, & Trinket Pro.
Adafruit SAMD Boards - Includes support for Feather M0 and M4, Metro M0 and
M4, ItsyBitsy M0 and M4, Circuit Playground Express, Gemma M0 and Trinket
M0
Arduino Leonardo & Micro MIDI-USB - This adds MIDI over USB support for the
Flora, Feather 32u4, Micro and Leonardo using the arcore project (https://
adafru.it/eSI).

If you have multiple boards you want to support, say ESP8266 and Adafruit, have
both URLs in the text box separated by a comma (,)

Once done click OK to save the new preference settings. Next we will look at
installing boards with the Board Manager.

Now continue to the next step to actually install the board support package!

Using with Arduino IDE
The Feather/Metro/Gemma/QTPy/Trinket M0 and M4 use an ATSAMD21 or ATSAMD51
chip, and you can pretty easily get it working with the Arduino IDE. Most libraries
(including the popular ones like NeoPixels and display) will work with the M0 and M4,
especially devices & sensors that use I2C or SPI.

Now that you have added the appropriate URLs to the Arduino IDE preferences in the
previous page, you can open the Boards Manager by navigating to the Tools-
>Board menu.

•

•

•

©Adafruit Industries Page 32 of 259

https://github.com/rkistner/arcore

Once the Board Manager opens, click on the category drop down menu on the top
left hand side of the window and select All. You will then be able to select and install
the boards supplied by the URLs added to the preferences.

Install SAMD Support
First up, install the latest Arduino SAMD Boards (version 1.6.11 or later)

You can type Arduino SAMD in the top search bar, then when you see the entry, click
Install

Install Adafruit SAMD
Next you can install the Adafruit SAMD package to add the board file definitions

Make sure you have Type All selected to the left of the Filter your search... box

You can type Adafruit SAMD in the top search bar, then when you see the entry, click
Install

Remember you need SETUP the Arduino IDE to support our board packages -
see the previous page on how to add adafruit's URL to the preferences

©Adafruit Industries Page 33 of 259

Even though in theory you don't need to - I recommend rebooting the IDE

Quit and reopen the Arduino IDE to ensure that all of the boards are properly
installed. You should now be able to select and upload to the new boards listed in the
Tools->Board menu.

Select the matching board, the current options are:

Feather M0 (for use with any Feather M0 other than the Express)
Feather M0 Express
Metro M0 Express
Circuit Playground Express
Gemma M0
Trinket M0
QT Py M0
ItsyBitsy M0
Hallowing M0
Crickit M0 (this is for direct programming of the Crickit, which is probably not
what you want! For advanced hacking only)
Metro M4 Express
Grand Central M4 Express
ItsyBitsy M4 Express
Feather M4 Express
Trellis M4 Express
PyPortal M4
PyPortal M4 Titano
PyBadge M4 Express
Metro M4 Airlift Lite
PyGamer M4 Express
MONSTER M4SK

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

©Adafruit Industries Page 34 of 259

Hallowing M4
MatrixPortal M4
BLM Badge

Install Drivers (Windows 7 & 8 Only)
When you plug in the board, you'll need to possibly install a driver

Click below to download our Driver Installer

Download Latest Adafruit Drivers
package

https://adafru.it/mb8

Download and run the installer

Run the installer! Since we bundle the SiLabs and FTDI drivers as well, you'll need to
click through the license

•
•
•

©Adafruit Industries Page 35 of 259

https://github.com/adafruit/Adafruit_Windows_Drivers/releases

Select which drivers you want to install, the defaults will set you up with just about
every Adafruit board!

Click Install to do the installin'

©Adafruit Industries Page 36 of 259

Blink
Now you can upload your first blink sketch!

Plug in the M0 or M4 board, and wait for it to be recognized by the OS (just takes a
few seconds). It will create a serial/COM port, you can now select it from the drop-
down, it'll even be 'indicated' as Trinket/Gemma/Metro/Feather/ItsyBitsy/Trellis!

Please note, the QT Py and Trellis M4 Express are two of our very few boards that
does not have an onboard pin 13 LED so you can follow this section to practice
uploading but you wont see an LED blink!

Now load up the Blink example

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {

©Adafruit Industries Page 37 of 259

 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

And click upload! That's it, you will be able to see the LED blink rate change as you
adapt the delay() calls.

Successful Upload
If you have a successful upload, you'll get a bunch of red text that tells you that the
device was found and it was programmed, verified & reset

After uploading, you may see a message saying "Disk Not Ejected Properly" about the
...BOOT drive. You can ignore that message: it's an artifact of how the bootloader and
uploading work.

Compilation Issues
If you get an alert that looks like

Cannot run program "{runtime.tools.arm-none-eabi-gcc.path}\bin\arm-non-eabi-g++"

Make sure you have installed the Arduino SAMD boards package, you need both
Arduino & Adafruit SAMD board packages

If you are having issues, make sure you selected the matching Board in the menu
that matches the hardware you have in your hand.

©Adafruit Industries Page 38 of 259

Manually bootloading
If you ever get in a 'weird' spot with the bootloader, or you have uploaded code that
crashes and doesn't auto-reboot into the bootloader, click the RST button twice (like a
double-click)to get back into the bootloader.

The red LED will pulse and/or RGB LED will be green, so you know that its in
bootloader mode.

Once it is in bootloader mode, you can select the newly created COM/Serial port and
re-try uploading.

You may need to go back and reselect the 'normal' USB serial port next time you want
to use the normal upload.

Ubuntu & Linux Issue Fix
Follow the steps for installing Adafruit's udev rules on this page. (https://adafru.it/iOE)

©Adafruit Industries Page 39 of 259

file:///home/adafruit-arduino-ide-setup/linux-setup#udev-rules

Adapting Sketches to M0 & M4
The ATSAMD21 and 51 are very nice little chips, but fairly new as Arduino-compatible
cores go. Most sketches & libraries will work but here’s a collection of things we
noticed.

The notes below cover a range of Adafruit M0 and M4 boards, but not every rule will
apply to every board (e.g. Trinket and Gemma M0 do not have ARef, so you can skip
the Analog References note!).

Analog References
If you'd like to use the ARef pin for a non-3.3V analog reference, the code to use is
analogReference(AR_EXTERNAL) (it's AR_EXTERNAL not EXTERNAL)

Pin Outputs & Pullups
The old-style way of turning on a pin as an input with a pullup is to use

pinMode(pin, INPUT)

digitalWrite(pin, HIGH)

This is because the pullup-selection register on 8-bit AVR chips is the same as the
output-selection register.

For M0 & M4 boards, you can't do this anymore! Instead, use:

pinMode(pin, INPUT_PULLUP)

Code written this way still has the benefit of being backwards compatible with AVR.
You don’t need separate versions for the different board types.

Serial vs SerialUSB
99.9% of your existing Arduino sketches use Serial.print to debug and give output.
For the Official Arduino SAMD/M0 core, this goes to the Serial5 port, which isn't
exposed on the Feather. The USB port for the Official Arduino M0 core is called
SerialUSB instead.

©Adafruit Industries Page 40 of 259

In the Adafruit M0/M4 Core, we fixed it so that Serial goes to USB so it will
automatically work just fine.

However, on the off chance you are using the official Arduino SAMD core and not
the Adafruit version (which really, we recommend you use our version because it’s
been tuned to our boards), and you want your Serial prints and reads to use the USB
port, use SerialUSB instead of Serial in your sketch.

If you have existing sketches and code and you want them to work with the M0
without a huge find-replace, put

#if defined(ARDUINO_SAMD_ZERO) && defined(SERIAL_PORT_USBVIRTUAL)

 // Required for Serial on Zero based boards

 #define Serial SERIAL_PORT_USBVIRTUAL

#endif

right above the first function definition in your code. For example:

AnalogWrite / PWM on Feather/Metro M0
After looking through the SAMD21 datasheet, we've found that some of the options
listed in the multiplexer table don't exist on the specific chip used in the Feather M0.

For all SAMD21 chips, there are two peripherals that can generate PWM signals: The
Timer/Counter (TC) and Timer/Counter for Control Applications (TCC). Each SAMD21
has multiple copies of each, called 'instances'.

Each TC instance has one count register, one control register, and two output
channels. Either channel can be enabled and disabled, and either channel can be
inverted. The pins connected to a TC instance can output identical versions of the
same PWM waveform, or complementary waveforms.

©Adafruit Industries Page 41 of 259

Each TCC instance has a single count register, but multiple compare registers and
output channels. There are options for different kinds of waveform, interleaved
switching, programmable dead time, and so on.

The biggest members of the SAMD21 family have five TC instances with two
'waveform output' (WO) channels, and three TCC instances with eight WO channels:

TC[0-4],WO[0-1]
TCC[0-2],WO[0-7]

And those are the ones shown in the datasheet's multiplexer tables.

The SAMD21G used in the Feather M0 only has three TC instances with two output
channels, and three TCC instances with eight output channels:

TC[3-5],WO[0-1]
TCC[0-2],WO[0-7]

Tracing the signals to the pins broken out on the Feather M0, the following pins can't
do PWM at all:

Analog pin A5

The following pins can be configured for PWM without any signal conflicts as long as
the SPI, I2C, and UART pins keep their protocol functions:

Digital pins 5, 6, 9, 10, 11, 12, and 13
Analog pins A3 and A4

If only the SPI pins keep their protocol functions, you can also do PWM on the
following pins:

TX and SDA (Digital pins 1 and 20)

analogWrite() PWM range
On AVR, if you set a pin's PWM with analogWrite(pin, 255) it will turn the pin fully
HIGH. On the ARM cortex, it will set it to be 255/256 so there will be very slim but

•
•

•
•

•

•
•

•

©Adafruit Industries Page 42 of 259

still-existing pulses-to-0V. If you need the pin to be fully on, add test code that checks
if you are trying to analogWrite(pin, 255) and, instead, does a
digitalWrite(pin, HIGH)

analogWrite() DAC on A0
If you are trying to use analogWrite() to control the DAC output on A0, make sure
you do not have a line that sets the pin to output. Remove: pinMode(A0, OUTPUT) .

Missing header files
There might be code that uses libraries that are not supported by the M0 core. For
example if you have a line with

#include <util/delay.h>

you'll get an error that says

fatal error: util/delay.h: No such file or directory

 #include <util/delay.h>

 ^

compilation terminated.

Error compiling.

In which case you can simply locate where the line is (the error will give you the file
name and line number) and 'wrap it' with #ifdef's so it looks like:

#if !defined(ARDUINO_ARCH_SAM) && !defined(ARDUINO_ARCH_SAMD) && !
defined(ESP8266) && !defined(ARDUINO_ARCH_STM32F2)
 #include <util/delay.h>
#endif

The above will also make sure that header file isn't included for other architectures

If the #include is in the arduino sketch itself, you can try just removing the line.

Bootloader Launching
For most other AVRs, clicking reset while plugged into USB will launch the bootloader
manually, the bootloader will time out after a few seconds. For the M0/M4, you'll need
to double click the button. You will see a pulsing red LED to let you know you're in

©Adafruit Industries Page 43 of 259

bootloader mode. Once in that mode, it wont time out! Click reset again if you want to
go back to launching code.

Aligned Memory Access
This is a little less likely to happen to you but it happened to me! If you're used to 8-
bit platforms, you can do this nice thing where you can typecast variables around. e.g.

uint8_t mybuffer[4];

float f = (float)mybuffer;

You can't be guaranteed that this will work on a 32-bit platform because mybuffer
might not be aligned to a 2 or 4-byte boundary. The ARM Cortex-M0 can only directly
access data on 16-bit boundaries (every 2 or 4 bytes). Trying to access an odd-
boundary byte (on a 1 or 3 byte location) will cause a Hard Fault and stop the MCU.
Thankfully, there's an easy work around ... just use memcpy!

uint8_t mybuffer[4];

float f;

memcpy(&f, mybuffer, 4)

Floating Point Conversion
Like the AVR Arduinos, the M0 library does not have full support for converting
floating point numbers to ASCII strings. Functions like sprintf will not convert floating
point. Fortunately, the standard AVR-LIBC library includes the dtostrf function which
can handle the conversion for you.

Unfortunately, the M0 run-time library does not have dtostrf. You may see some
references to using #include <avr/dtostrf.h> to get dtostrf in your code. And while it
will compile, it does not work.

Instead, check out this thread to find a working dtostrf function you can include in
your code:

http://forum.arduino.cc/index.php?topic=368720.0 (https://adafru.it/lFS)

©Adafruit Industries Page 44 of 259

http://forum.arduino.cc/index.php?topic=368720.0

How Much RAM Available?
The ATSAMD21G18 has 32K of RAM, but you still might need to track it for some
reason. You can do so with this handy function:

extern "C" char *sbrk(int i);

int FreeRam () {
 char stack_dummy = 0;
 return &stack_dummy - sbrk(0);
}

Thx to http://forum.arduino.cc/index.php?
topic=365830.msg2542879#msg2542879 (https://adafru.it/m6D) for the tip!

Storing data in FLASH
If you're used to AVR, you've probably used PROGMEM to let the compiler know
you'd like to put a variable or string in flash memory to save on RAM. On the ARM, its
a little easier, simply add const before the variable name:

const char str[] = "My very long string";

That string is now in FLASH. You can manipulate the string just like RAM data, the
compiler will automatically read from FLASH so you dont need special progmem-
knowledgeable functions.

You can verify where data is stored by printing out the address:
Serial.print("Address of str $"); Serial.println((int)&str, HEX);

If the address is $2000000 or larger, its in SRAM. If the address is between $0000
and $3FFFF Then it is in FLASH

Pretty-Printing out registers
There's a lot of registers on the SAMD21, and you often are going through ASF or
another framework to get to them. So having a way to see exactly what's going on is
handy. This library from drewfish will help a ton!

https://github.com/drewfish/arduino-ZeroRegs (https://adafru.it/Bet)

©Adafruit Industries Page 45 of 259

http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879
http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879
https://github.com/drewfish/arduino-ZeroRegs

M4 Performance Options
As of version 1.4.0 of the Adafruit SAMD Boards package in the Arduino Boards
Manager, some options are available to wring extra performance out of M4-based
devices. These are in the Tools menu.

All of these performance tweaks involve a degree of uncertainty. There’s no
guarantee of improved performance in any given project, and some may even be
detrimental, failing to work in part or in whole. If you encounter trouble, select the
default performance settings and re-upload.

Here’s what you get and some issues you might encounter…

CPU Speed (overclocking)

This option lets you adjust the microcontroller core clock…the speed at which it
processes instructions…beyond the official datasheet specifications.

Manufacturers often rate speeds conservatively because such devices are marketed
for harsh industrial environments…if a system crashes, someone could lose a limb or
worse. But most creative tasks are less critical and operate in more comfortable
settings, and we can push things a bit if we want more speed.

There is a small but nonzero chance of code locking up or failing to run entirely. If
this happens, try dialing back the speed by one notch and re-upload, see if it’s more
stable.

Much more likely, some code or libraries may not play well with the nonstandard CPU
speed. For example, currently the NeoPixel library assumes a 120 MHz CPU speed
and won’t issue the correct data at other settings (this will be worked on). Other

©Adafruit Industries Page 46 of 259

libraries may exhibit similar problems, usually anything that strictly depends on CPU
timing…you might encounter problems with audio- or servo-related code depending
how it’s written. If you encounter such code or libraries, set the CPU speed to the
default 120 MHz and re-upload.

Optimize

There’s usually more than one way to solve a problem, some more resource-intensive
than others. Since Arduino got its start on resource-limited AVR microcontrollers, the
C++ compiler has always aimed for the smallest compiled program size. The
“Optimize” menu gives some choices for the compiler to take different and often
faster approaches, at the expense of slightly larger program size…with the huge flash
memory capacity of M4 devices, that’s rarely a problem now.

The “Small” setting will compile your code like it always has in the past, aiming for the
smallest compiled program size.

The “Fast” setting invokes various speed optimizations. The resulting program should
produce the same results, is slightly larger, and usually (but not always) noticably
faster. It’s worth a shot!

“Here be dragons” invokes some more intensive optimizations…code will be larger
still, faster still, but there’s a possibility these optimizations could cause unexpected
behaviors. Some code may not work the same as before. Hence the name. Maybe
you’ll discover treasure here, or maybe you’ll sail right off the edge of the world.

Most code and libraries will continue to function regardless of the optimizer settings.
If you do encounter problems, dial it back one notch and re-upload.

Cache

This option allows a small collection of instructions and data to be accessed more
quickly than from flash memory, boosting performance. It’s enabled by default and
should work fine with all code and libraries. But if you encounter some esoteric
situation, the cache can be disabled, then recompile and upload.

Max SPI and Max QSPI

These should probably be left at their defaults. They’re present mostly for our own
experiments and can cause serious headaches.

©Adafruit Industries Page 47 of 259

Max SPI determines the clock source for the M4’s SPI peripherals. Under normal
circumstances this allows transfers up to 24 MHz, and should usually be left at that
setting. But…if you’re using write-only SPI devices (such as TFT or OLED displays), this
option lets you drive them faster (we’ve successfully used 60 MHz with some TFT
screens). The caveat is, if using any read/write devices (such as an SD card), this will
not work at all…SPI reads absolutely max out at the default 24 MHz setting, and
anything else will fail. Write = OK. Read = FAIL. This is true even if your code is using
a lower bitrate setting…just having the different clock source prevents SPI reads.

Max QSPI does similarly for the extra flash storage on M4 “Express” boards. Very few
Arduino sketches access this storage at all, let alone in a bandwidth-constrained
context, so this will benefit next to nobody. Additionally, due to the way clock dividers
are selected, this will only provide some benefit when certain “CPU Speed” settings
are active. Our PyPortal Animated GIF Display (https://adafru.it/EkO) runs marginally
better with it, if using the QSPI flash.

Enabling the Buck Converter on some M4
Boards
If you want to reduce power draw, some of our boards have an inductor so you can
use the 1.8V buck converter instead of the built in linear regulator. If the board does
have an inductor (see the schematic) you can add the line SUPC->VREG.bit.SEL =
1; to your code to switch to it. Note it will make ADC/DAC reads a bit noisier so we
don't use it by default. You'll save ~4mA (https://adafru.it/F0H).

Using SPI Flash
One of the best features of the M0 express board is a small SPI flash memory chip
built into the board. This memory can be used for almost any purpose like
storing data files, Python code, and more. Think of it like a little SD card that is always
connected to the board, and in fact with Arduino you can access the memory using a
library that is very similar to the Arduino SD card library (https://adafru.it/ucu). You can
even read and write files that CircuitPython stores on the flash chip!

To use the flash memory with Arduino you'll need to install the Adafruit SPI Flash
Memory library (https://adafru.it/wbt) in the Arduino IDE.

Open up the Arduino library manager

©Adafruit Industries Page 48 of 259

https://learn.adafruit.com/pyportal-animated-gif-display
https://github.com/adafruit/ArduinoCore-samd/issues/128
https://www.arduino.cc/en/reference/SD
https://github.com/adafruit/Adafruit_SPIFlash
https://github.com/adafruit/Adafruit_SPIFlash

Search for the Adafruit SPIFlash library and install it

Search for the SdFat - Adafruit Fork library and install it

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://
adafru.it/aYM)

Once the library is installed look for the following examples in the library:

fatfs_circuitpython
fatfs_datalogging
fatfs_format
fatfs_full_usage
fatfs_print_file
flash_erase

These examples allow you to format the flash memory with a FAT filesystem (the same
kind of filesystem used on SD cards) and read and write files to it just like a SD card.

•
•
•
•
•
•

©Adafruit Industries Page 49 of 259

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Read & Write CircuitPython Files
The fatfs_circuitpython example shows how to read and write files on the flash chip
so that they're accessible from CircuitPython. This means you can run a CircuitPython
program on your board and have it store data, then run an Arduino sketch that uses
this library to interact with the same data.

Note that before you use the fatfs_circuitpython example you must have loaded
CircuitPython on your board. Load the latest version of CircuitPython as explained in
this guide (https://adafru.it/BeN) first to ensure a CircuitPython filesystem is initialized
and written to the flash chip. Once you've loaded CircuitPython then you can run the
fatfs_circuitpython example sketch.

To run the sketch load it in the Arduino IDE and upload it to the Feather/Metro/
ItsyBitsy M0 board. Then open the serial monitor at 115200 baud. You should see the
serial monitor display messages as it attempts to read files and write to a file on the
flash chip. Specifically the example will look for a boot.py and main.py file (like what
CircuitPython runs when it starts) and print out their contents. Then it will add a line
to the end of a data.txt file on the board (creating it if it doesn't exist already). After
running the sketch you can reload CircuitPython on the board and open the data.txt
file to read it from CircuitPython!

To understand how to read & write files that are compatible with CircuitPython let's
examine the sketch code. First notice an instance of the
Adafruit_M0_Express_CircuitPython class is created and passed an instance of the
flash chip class in the last line below:

#define FLASH_SS SS1 // Flash chip SS pin.
#define FLASH_SPI_PORT SPI1 // What SPI port is Flash on?

Adafruit_SPIFlash flash(FLASH_SS, &FLASH_SPI_PORT); // Use hardware SPI

// Alternatively you can define and use non-SPI pins!
//Adafruit_SPIFlash flash(SCK1, MISO1, MOSI1, FLASH_SS);

// Finally create an Adafruit_M0_Express_CircuitPython object which gives
// an SD card-like interface to interacting with files stored in CircuitPython's
// flash filesystem.
Adafruit_M0_Express_CircuitPython pythonfs(flash);

By using this Adafruit_M0_Express_CircuitPython class you'll get a filesystem object
that is compatible with reading and writing files on a CircuitPython-formatted flash
chip. This is very important for interoperability between CircuitPython and Arduino as
CircuitPython has specialized partitioning and flash memory layout that isn't
compatible with simpler uses of the library (shown in the other examples).

©Adafruit Industries Page 50 of 259

https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/kattni-circuitpython
https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/kattni-circuitpython

Once an instance of the Adafruit_M0_Express_CircuitPython class is created (called
pythonfs in this sketch) you can go on to interact with it just like if it were the SD card
library in Arduino (https://adafru.it/wbw). You can open files for reading & writing,
create directories, delete files and directories and more. Here's how the sketch
checks if a boot.py file exists and prints it out a character at a time:

 // Check if a boot.py exists and print it out.
 if (pythonfs.exists("boot.py")) {
 File bootPy = pythonfs.open("boot.py", FILE_READ);
 Serial.println("Printing boot.py...");
 while (bootPy.available()) {
 char c = bootPy.read();
 Serial.print(c);
 }
 Serial.println();
 }
 else {
 Serial.println("No boot.py found...");
 }

Notice the exists function is called to check if the boot.py file is found, and then the
open function is used to open it in read mode. Once a file is opened you'll get a
reference to a File class object which you can read and write from as if it were a Serial
device (again just like the SD card library, all of the same File class functions are
available (https://adafru.it/wbw)). In this case the available function will return the
number of bytes left to read in the file, and the read function will read a character at a
time to print it to the serial monitor.

Writing a file is just as easy, here's how the sketch writes to data.txt:

 // Create or append to a data.txt file and add a new line
 // to the end of it. CircuitPython code can later open and
 // see this file too!
 File data = pythonfs.open("data.txt", FILE_WRITE);
 if (data) {
 // Write a new line to the file:
 data.println("Hello CircuitPython from Arduino!");
 data.close();
 // See the other fatfs examples like fatfs_full_usage and fatfs_datalogging
 // for more examples of interacting with files.
 Serial.println("Wrote a new line to the end of data.txt!");
 }
 else {
 Serial.println("Error, failed to open data file for writing!");
 }

Again the open function is used but this time it's told to open the file for writing. In
this mode the file will be opened for appending (i.e. data added to the end of it) if it
exists, or it will be created if it doesn't exist. Once the file is open print functions like
print and println can be used to write data to the file (just like writing to the serial
monitor). Be sure to close the file when finished writing!

©Adafruit Industries Page 51 of 259

https://www.arduino.cc/en/Reference/SD
https://www.arduino.cc/en/Reference/SD
https://www.arduino.cc/en/Reference/SD
https://www.arduino.cc/en/Reference/SD

That's all there is to basic file reading and writing. Check out the fatfs_full_usage
example for examples of even more functions like creating directories, deleting files &
directories, checking the size of files, and more! Remember though to interact with
CircuitPython files you need to use the Adafruit_Feather_M0_CircuitPython class as
shown in the fatfs_circuitpython example above!

Format Flash Memory
The fatfs_format example will format the SPI flash with a new blank filesystem. Be
warned this sketch will delete all data on the flash memory, including any Python
code or other data you might have stored! The format sketch is useful if you'd like to
wipe everything away and start fresh, or to help get back in a good state if the
memory should get corrupted for some reason.

Be aware too the fatfs_format and examples below are not compatible with a
CircuitPython-formatted flash chip! If you need to share data between Arduino &
CircuitPython check out the fatfs_circuitpython example above.

To run the format sketch load it in the Arduino IDE and upload it to the M0 board.
 Then open the serial monitor at 115200 baud. You should see the serial monitor
display a message asking you to confirm formatting the flash. If you don't see this
message then close the serial monitor, press the board's reset button, and open the
serial monitor again.

Type OK and press enter in the serial monitor input to confirm that you'd like to format
the flash memory. You need to enter OK in all capital letters!

Once confirmed the sketch will format the flash memory. The format process takes
about a minute so be patient as the data is erased and formatted. You should see a

©Adafruit Industries Page 52 of 259

message printed once the format process is complete. At this point the flash chip will
be ready to use with a brand new empty filesystem.

Datalogging Example
One handy use of the SPI flash is to store data, like datalogging sensor readings. The
fatfs_datalogging example shows basic file writing/datalogging. Open the example in
the Arduino IDE and upload it to your Feather M0 board. Then open the serial
monitor at 115200 baud. You should see a message printed every minute as the
sketch writes a new line of data to a file on the flash filesystem.

To understand how to write to a file look in the loop function of the sketch:

 // Open the datalogging file for writing. The FILE_WRITE mode will open
 // the file for appending, i.e. it will add new data to the end of the file.
 File dataFile = fatfs.open(FILE_NAME, FILE_WRITE);
 // Check that the file opened successfully and write a line to it.
 if (dataFile) {
 // Take a new data reading from a sensor, etc. For this example just
 // make up a random number.
 int reading = random(0,100);
 // Write a line to the file. You can use all the same print functions
 // as if you're writing to the serial monitor. For example to write
 // two CSV (commas separated) values:
 dataFile.print("Sensor #1");
 dataFile.print(",");
 dataFile.print(reading, DEC);
 dataFile.println();
 // Finally close the file when done writing. This is smart to do to make
 // sure all the data is written to the file.
 dataFile.close();
 Serial.println("Wrote new measurement to data file!");
 }

Just like using the Arduino SD card library you create a File object by calling an open
function and pointing it at the name of the file and how you'd like to open it
(FILE_WRITE mode, i.e. writing new data to the end of the file). Notice however
instead of calling open on a global SD card object you're calling it on a fatfs object
created earlier in the sketch (look at the top after the #define configuration values).

Once the file is opened it's simply a matter of calling print and println functions on the
file object to write data inside of it. This is just like writing data to the serial monitor
and you can print out text, numeric, and other types of data. Be sure to close the file
when you're done writing to ensure the data is stored correctly!

©Adafruit Industries Page 53 of 259

Reading and Printing Files
The fatfs_print_file example will open a file (by default the data.csv file created by
running the fatfs_datalogging example above) and print all of its contents to the serial
monitor. Open the fatfs_print_file example and load it on your Feather M0 board,
then open the serial monitor at 115200 baud. You should see the sketch print out the
contents of data.csv (if you don't have a file called data.csv on the flash look at
running the datalogging example above first).

To understand how to read data from a file look in the setup function of the sketch:

 // Open the file for reading and check that it was successfully opened.
 // The FILE_READ mode will open the file for reading.
 File dataFile = fatfs.open(FILE_NAME, FILE_READ);
 if (dataFile) {
 // File was opened, now print out data character by character until at the
 // end of the file.
 Serial.println("Opened file, printing contents below:");
 while (dataFile.available()) {
 // Use the read function to read the next character.
 // You can alternatively use other functions like readUntil, readString, etc.
 // See the fatfs_full_usage example for more details.
 char c = dataFile.read();
 Serial.print(c);
 }
 }

Just like when writing data with the datalogging example you create a File object by
calling the open function on a fatfs object. This time however you pass a file mode of
FILE_READ which tells the filesystem you want to read data.

After you open a file for reading you can easily check if data is available by calling the
available function on the file, and then read a single character with the read function.
 This makes it easy to loop through all of the data in a file by checking if it's available
and reading a character at a time. However there are more advanced read functions
you can use too--see the fatfs_full_usage example or even the Arduino SD library
documentation (https://adafru.it/ucu) (the SPI flash library implements the same
functions).

Full Usage Example
For a more complete demonstration of reading and writing files look at the
fatfs_full_usage example. This examples uses every function in the library and
demonstrates things like checking for the existence of a file, creating directories,
deleting files, deleting directories, and more.

©Adafruit Industries Page 54 of 259

https://www.arduino.cc/en/reference/SD
https://www.arduino.cc/en/reference/SD

Remember the SPI flash library is built to have the same functions and interface as the
Arduino SD library (https://adafru.it/ucu) so if you have code or examples that store
data on a SD card they should be easy to adapt to use the SPI flash library, just create
a fatfs object like in the examples above and use its open function instead of the
global SD object's open function. Once you have a reference to a file all of the
functions and usage should be the same between the SPI flash and SD libraries!

Accessing SPI Flash
Arduino doesn't have the ability to show up as a 'mass storage' disk drive. So instead
we must use CircuitPython to do that part for us. Here's the full technique:

Start the bootloader on the Express board. Drag over the latest circuitpython
uf2 file
After a moment, you should see a CIRCUITPY drive appear on your hard drive
with boot_out.txt on it
Now go to Arduino and upload the fatfs_circuitpython example sketch from the
Adafruit SPI library. Open the serial console. It will successfully mount the
filesystem and write a new line to data.txt

Back on your computer, re-start the Express board bootloader, and re-drag
circuitpython.uf2 onto the BOOT drive to reinstall circuitpython
Check the CIRCUITPY drive, you should now see data.txt which you can open to
read!

•

•

•

•

•

©Adafruit Industries Page 55 of 259

https://www.arduino.cc/en/reference/SD

Once you have your Arduino sketch working well, for datalogging, you can simplify
this procedure by dragging CURRENT.UF2 off of the BOOT drive to make a backup of
the current program before loading circuitpython on. Then once you've accessed the
file you want, re-drag CURRENT.UF2 back onto the BOOT drive to re-install the
Arduino sketch!

Feather HELP!

My ItsyBitsy/Feather stopped working when I unplugged
the USB!

A lot of our example sketches have a

while (!Serial);

line in setup(), to keep the board waiting until the USB is opened. This makes it a
lot easier to debug a program because you get to see all the USB data output. If
you want to run your Feather without USB connectivity, delete or comment out that
line

Even though this FAQ is labeled for Feather, the questions apply to ItsyBitsy's as
well!

©Adafruit Industries Page 56 of 259

My Feather never shows up as a COM or Serial port in the
Arduino IDE

A vast number of Itsy/Feather 'failures' are due to charge-only USB cables

We get upwards of 5 complaints a day that turn out to be due to charge-only
cables!

Use only a cable that you know is for data syncing

If you have any charge-only cables, cut them in half throw them out. We are
serious! They tend to be low quality in general, and will only confuse you and
others later, just get a good data+charge USB cable.

A quality USB port is critical. Avoid plugging into USB keyboards and when
possible use a USB-2 HUB to avoid USB3 issues.

Ack! I "did something" and now when I plug in the Itsy/
Feather, it doesn't show up as a device anymore so I cant
upload to it or fix it...

No problem! You can 'repair' a bad code upload easily. Note that this can happen if
you set a watchdog timer or sleep mode that stops USB, or any sketch that
'crashes' your board

Turn on verbose upload in the Arduino IDE preferences
Plug in Itsy or Feather 32u4/M0, it won't show up as a COM/serial port that's
ok
Open up the Blink example (Examples->Basics->Blink)
Select the correct board in the Tools menu, e.g. Feather 32u4, Feather M0,
Itsy 32u4 or M0 (physically check your board to make sure you have the right
one selected!)
Compile it (make sure that works)
Click Upload to attempt to upload the code
The IDE will print out a bunch of COM Ports as it tries to upload. During this
time, double-click the reset button, you'll see the red pulsing LED that tells
you its now in bootloading mode
The board will show up as the Bootloader COM/Serial port
The IDE should see the bootloader COM/Serial port and upload properly

1.
2.

3.
4.

5.
6.
7.

8.
9.

©Adafruit Industries Page 57 of 259

I can't get the Itsy/Feather USB device to show up - I get
"USB Device Malfunctioning" errors!

This seems to happen when people select the wrong board from the Arduino
Boards menu.

If you have a Feather 32u4 (look on the board to read what it is you have) Make
sure you select Feather 32u4 for ATMega32u4 based boards! Do not use anything
else, do not use the 32u4 breakout board line.

If you have a Feather M0 (look on the board to read what it is you have) Make sure
you select Feather M0 - do not use 32u4 or Arduino Zero

If you have a ItsyBitsy M0 (look on the board to read what it is you have) Make sure
you select ItsyBitsy M0 - do not use 32u4 or Arduino Zero

©Adafruit Industries Page 58 of 259

I'm having problems with COM ports and my Itsy/Feather
32u4/M0

Theres two COM ports you can have with the 32u4/M0, one is the user port and
one is the bootloader port. They are not the same COM port number!

When you upload a new user program it will come up with a user com port,
particularly if you use Serial in your user program.

If you crash your user program, or have a program that halts or otherwise fails,
the user COM port can disappear.

When the user COM port disappears, Arduino will not be able to automatically
start the bootloader and upload new software.

So you will need to help it by performing the click-during upload procedure to re-
start the bootloader, and upload something that is known working like "Blink"

I don't understand why the COM port disappears, this
does not happen on my Arduino UNO!

UNO-type Arduinos have a seperate serial port chip (aka "FTDI chip" or "Prolific
PL2303" etc etc) which handles all serial port capability seperately than the main
chip. This way if the main chip fails, you can always use the COM port.

M0 and 32u4-based Arduinos do not have a seperate chip, instead the main
processor performs this task for you. It allows for a lower cost, higher power
setup...but requires a little more effort since you will need to 'kick' into the
bootloader manually once in a while

I'm trying to upload to my 32u4, getting "avrdude:
butterfly_recv(): programmer is not responding" errors

This is likely because the bootloader is not kicking in and you are accidentally
trying to upload to the wrong COM port

The best solution is what is detailed above: manually upload Blink or a similar
working sketch by hand by manually launching the bootloader

©Adafruit Industries Page 59 of 259

I'm trying to upload to my Feather M0, and I get this error
"Connecting to programmer: .avrdude: butterfly_recv():
programmer is not responding"

You probably don't have Feather M0 selected in the boards drop-down. Make sure
you selected Feather M0.

I'm trying to upload to my Feather and i get this error
"avrdude: ser_recv(): programmer is not responding"

You probably don't have Feather M0 / Feather 32u4 selected in the boards drop-
down. Make sure you selected Feather M0 (or Feather 32u4).

I attached some wings to my Feather and now I can't read
the battery voltage!

Make sure your Wing doesn't use pin #9 which is the analog sense for the lipo
battery!

The yellow LED Is flickering on my Feather, but no battery
is plugged in, why is that?

The charge LED is automatically driven by the Lipoly charger circuit. It will try to
detect a battery and is expecting one to be attached. If there isn't one it may flicker
once in a while when you use power because it's trying to charge a (non-existant)
battery.

It's not harmful, and its totally normal!

The Arduino IDE gives me "Device Descriptor Request Failed"

This can require "manual bootloading".

If you ever get in a 'weird' spot with the bootloader, or you have uploaded code that
crashes and doesn't auto-reboot into the bootloader, double-click the RST button to
get back into the bootloader. The red LED will pulse, so you know that its in
bootloader mode. Do the reset button double-press right as the Arduino IDE says its
attempting to upload the sketch, when you see the Yellow Arrow lit and the
Uploading... text in the status bar.

©Adafruit Industries Page 60 of 259

 (https://
adafru.it/UJA)

Don't click the reset button before uploading, unlike other bootloaders you want this
one to run at the time Arduino is trying to upload

What is CircuitPython?
CircuitPython is a programming language designed to simplify experimenting and
learning to program on low-cost microcontroller boards. It makes getting started
easier than ever with no upfront desktop downloads needed. Once you get your
board set up, open any text editor, and get started editing code. It's that simple.

CircuitPython is based on Python
Python is the fastest growing programming language. It's taught in schools and
universities. It's a high-level programming language which means it's designed to be

©Adafruit Industries Page 61 of 259

file:///assets/28444
file:///assets/28444

easier to read, write and maintain. It supports modules and packages which means it's
easy to reuse your code for other projects. It has a built in interpreter which means
there are no extra steps, like compiling, to get your code to work. And of course,
Python is Open Source Software which means it's free for anyone to use, modify or
improve upon.

CircuitPython adds hardware support to all of these amazing features. If you already
have Python knowledge, you can easily apply that to using CircuitPython. If you have
no previous experience, it's really simple to get started!

Why would I use CircuitPython?

CircuitPython is designed to run on microcontroller boards. A microcontroller board is
a board with a microcontroller chip that's essentially an itty-bitty all-in-one computer.
The board you're holding is a microcontroller board! CircuitPython is easy to use
because all you need is that little board, a USB cable, and a computer with a USB
connection. But that's only the beginning.

Other reasons to use CircuitPython include:

You want to get up and running quickly. Create a file, edit your code, save the
file, and it runs immediately. There is no compiling, no downloading and no
uploading needed.
You're new to programming. CircuitPython is designed with education in mind.
It's easy to start learning how to program and you get immediate feedback from
the board.
Easily update your code. Since your code lives on the disk drive, you can edit it
whenever you like, you can also keep multiple files around for easy
experimentation.
The serial console and REPL. These allow for live feedback from your code and
interactive programming.

•

•

•

•

©Adafruit Industries Page 62 of 259

File storage. The internal storage for CircuitPython makes it great for data-
logging, playing audio clips, and otherwise interacting with files.
Strong hardware support. CircuitPython has builtin support for microcontroller
hardware features like digital I/O pins, hardware buses (UART, I2C, SPI), audio I/
O, and other capabilities. There are also many libraries and drivers for sensors,
breakout boards and other external components.
It's Python! Python is the fastest-growing programming language. It's taught in
schools and universities. CircuitPython is almost-completely compatible with
Python. It simply adds hardware support.

This is just the beginning. CircuitPython continues to evolve, and is constantly being
updated. Adafruit welcomes and encourages feedback from the community, and
incorporate it into the development of CircuitPython. That's the core of the open
source concept. This makes CircuitPython better for you and everyone who uses it!

CircuitPython

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)
designed to simplify experimentation and education on low-cost microcontrollers. It
makes it easier than ever to get prototyping by requiring no upfront desktop software
downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

The following instructions will show you how to install CircuitPython. If you've already
installed CircuitPython but are looking to update it or reinstall it, the same steps work
for that as well!

Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

Download the latest version of
CircuitPython for this board via

CircuitPython.org
https://adafru.it/Em9

•

•

•

As we continue to develop CircuitPython and create new releases, we will stop
supporting older releases. If you are running an older version of CircuitPython,
you need to update. Click the button below to download the latest!

©Adafruit Industries Page 63 of 259

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/feather_m0_express/

Click the link above and download the
latest UF2 file.

Download and save it to your desktop (or
wherever is handy).

Plug your Feather M0 into your computer
using a known-good USB cable.

A lot of people end up using charge-only
USB cables and it is very frustrating! So
make sure you have a USB cable you
know is good for data sync.

Double-click the Reset button next to the
USB connector on your board, and you will
see the NeoPixel RGB LED turn green. If it
turns red, check the USB cable, try another
USB port, etc. Note: The little red LED next
to the USB connector will pulse red. That's
ok!

If double-clicking doesn't work the first time, try again. Sometimes it can take a few
tries to get the rhythm right!

©Adafruit Industries Page 64 of 259

https://learn.adafruit.com//assets/50088
https://learn.adafruit.com//assets/50088
https://learn.adafruit.com//assets/50098
https://learn.adafruit.com//assets/50098

You will see a new disk drive appear called
FEATHERBOOT.

Drag the adafruit_circuitpython_etc.uf2
file to FEATHERBOOT.

The LED will flash. Then, the
FEATHERBOOT drive will disappear and a
new disk drive called CIRCUITPY will
appear.

That's it, you're done! :)

Further Information

For more detailed info on installing CircuitPython, check out Installing
CircuitPython (https://adafru.it/Amd).

©Adafruit Industries Page 65 of 259

https://learn.adafruit.com//assets/50095
https://learn.adafruit.com//assets/50095
https://learn.adafruit.com//assets/50096
https://learn.adafruit.com//assets/50096
https://learn.adafruit.com//assets/50097
https://learn.adafruit.com//assets/50097
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython

Installing the Mu Editor
Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's
written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial
console is built right in so you get immediate feedback from your board's serial
output!

Download and Install Mu

Download Mu from https://
codewith.mu (https://adafru.it/Be6).

Click the Download link for downloads and
installation instructions.

Click Start Here to find a wealth of other
information, including extensive tutorials
and and how-to's.

Mu is our recommended editor - please use it (unless you are an experienced
coder with a favorite editor already!).

Windows users: due to the nature of MSI installers, please remove old versions of
Mu before installing the latest version.

©Adafruit Industries Page 66 of 259

https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://codewith.mu/

Starting Up Mu

The first time you start Mu, you will be
prompted to select your 'mode' - you can
always change your mind later. For now
please select CircuitPython!

The current mode is displayed in the lower
right corner of the window, next to the
"gear" icon. If the mode says "Microbit" or
something else, click the Mode button in
the upper left, and then choose
"CircuitPython" in the dialog box that
appears.

Mu attempts to auto-detect your board on
startup, so if you do not have a
CircuitPython board plugged in with a
CIRCUITPY drive available, Mu will inform
you where it will store any code you save
until you plug in a board.

To avoid this warning, plug in a board and
ensure that the CIRCUITPY drive is
mounted before starting Mu.

Using Mu

You can now explore Mu! The three main sections of the window are labeled below;
the button bar, the text editor, and the serial console / REPL.

©Adafruit Industries Page 67 of 259

https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679

Now you're ready to code! Let's keep going...

Creating and Editing Code
One of the best things about CircuitPython is how simple it is to get code up and
running. This section covers how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. Adafruit
strongly recommends using Mu! It's designed for CircuitPython, and it's really simple
and easy to use, with a built in serial console!

If you don't or can't use Mu, there are a number of other editors that work quite well.
The Recommended Editors page (https://adafru.it/Vue) has more details. Otherwise,
make sure you do "Eject" or "Safe Remove" on Windows or "sync" on Linux after
writing a file if you aren't using Mu. (This was formerly not a problem on macOS, but
see the warning below.)

macOS Sonoma (14.x) introduced a bug that delays writes to small drives such as
CIRCUITPY drives. This causes errors when saving files to CIRCUITPY. For a
workaround, see https://learn.adafruit.com/welcome-to-circuitpython/
troubleshooting#macos-sonoma-14-dot-x-disk-errors-writing-to-circuitpy-3160304

©Adafruit Industries Page 68 of 259

https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#macos-sonoma-14-dot-x-disk-errors-writing-to-circuitpy-3160304
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#macos-sonoma-14-dot-x-disk-errors-writing-to-circuitpy-3160304

Creating Code

Installing CircuitPython generates a
code.py file on your CIRCUITPY drive. To
begin your own program, open your editor,
and load the code.py file from the
CIRCUITPY drive.

If you are using Mu, click the Load button
in the button bar, navigate to the
CIRCUITPY drive, and choose code.py.

Copy and paste the following code into your editor:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

If you're using a KB2040, QT Py or a Trinkey, please download the NeoPixel blink
example (https://adafru.it/UDU).

The KB2040, QT Py and the Trinkeys do not have a built-in little red LED! There is
an addressable RGB NeoPixel LED. The above example will NOT work on the
KB2040, QT Py or the Trinkeys!

The NeoPixel blink example uses the onboard NeoPixel, but the time code is the
same. You can use the linked NeoPixel Blink example to follow along with this
guide page.

©Adafruit Industries Page 69 of 259

https://learn.adafruit.com//assets/105703
https://learn.adafruit.com//assets/105703
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py

It will look like this. Note that under the
while True: line, the next four lines
begin with four spaces to indent them, and
they're indented exactly the same amount.
All the lines before that have no spaces
before the text.

Save the code.py file on your CIRCUITPY
drive.

The little LED should now be blinking. Once per half-second.

Congratulations, you've just run your first CircuitPython program!

On most boards you'll find a tiny red LED.

On the ItsyBitsy nRF52840, you'll find a tiny blue LED.

On QT Py M0, QT Py RP2040, and the Trinkey series, you will find only an RGB
NeoPixel LED.

©Adafruit Industries Page 70 of 259

https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105705

Editing Code

To edit code, open the code.py file on your
CIRCUITPY drive into your editor.

Make the desired changes to your code.
Save the file. That's it!

Your code changes are run as soon as the file is done saving.

There's one warning before you continue...

The CircuitPython code on your board detects when the files are changed or written
and will automatically re-start your code. This makes coding very fast because you
save, and it re-runs. If you unplug or reset the board before your computer finishes
writing the file to your board, you can corrupt the drive. If this happens, you may lose
the code you've written, so it's important to backup your code to your computer
regularly.

There are a couple of ways to avoid filesystem corruption.

1. Use an editor that writes out the file completely when you save it.

Check out the Recommended Editors page (https://adafru.it/Vue) for details on
different editing options.

Don't click reset or unplug your board!

If you are dragging a file from your host computer onto the CIRCUITPY drive, you
still need to do step 2. Eject or Sync (below) to make sure the file is completely
written.

©Adafruit Industries Page 71 of 259

https://learn.adafruit.com//assets/105706
https://learn.adafruit.com//assets/105706
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make
it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually
eject, but it will force the operating system to save your file to disk. On Linux, use the
sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file
manager to drag a file onto CIRCUITPY.

Oh No I Did Something Wrong and Now The CIRCUITPY
Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this
happens, follow the steps found on the Troubleshooting (https://adafru.it/Den) page
of every board guide to get your board up and running again.

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file
into your editor. You'll make a simple change. Change the first 0.5 to 0.1 . The code
should look like this:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True
time.sleep(0.1)
led.value = False
time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your
board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it
looks like this:

while True:
 led.value = True

©Adafruit Industries Page 72 of 259

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

 time.sleep(0.1)
 led.value = False
 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on
and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly
because you've increased the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them
to see what happens! These were simple changes, but major changes are done using
the same process. Make your desired change, save it, and get the results. That's
really all there is to it!

Naming Your Program File
CircuitPython looks for a code file on the board to run. There are four options:
code.txt, code.py, main.txt and main.py. CircuitPython looks for those files, in that
order, and then runs the first one it finds. While code.py is the recommended name
for your code file, it is important to know that the other options exist. If your program
doesn't seem to be updating as you work, make sure you haven't created another
code file that's being read instead of the one you're working on.

Connecting to the Serial Console
One of the staples of CircuitPython (and programming in general!) is something called
a "print statement". This is a line you include in your code that causes your code to
output text. A print statement in CircuitPython (and Python) looks like this:

print("Hello, world!")

This line in your code.py would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial
console comes in!

The serial console receives output from your CircuitPython board sent over USB and
displays it so you can see it. This is necessary when you've included a print statement
in your code and you'd like to see what you printed. It is also helpful for

©Adafruit Industries Page 73 of 259

troubleshooting errors, because your board will send errors and the serial console will
display those too.

The serial console requires an editor that has a built in terminal, or a separate
terminal program. A terminal is a program that gives you a text-based interface to
perform various tasks.

Are you using Mu?
If so, good news! The serial console is built into Mu and will autodetect your board
making using the serial console really really easy.

First, make sure your CircuitPython board
is plugged in.

If you open Mu without a board plugged
in, you may encounter the error seen here,
letting you know no CircuitPython board
was found and indicating where your code
will be stored until you plug in a board.

If you are using Windows 7, make sure you
installed the drivers (https://adafru.it/VuB).

Once you've opened Mu with your board plugged in, look for the Serial button in the
button bar and click it.

The Mu window will split in two, horizontally, and display the serial console at the
bottom.

©Adafruit Industries Page 74 of 259

https://learn.adafruit.com//assets/105925
https://learn.adafruit.com//assets/105925
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers

Serial Console Issues or Delays on Linux

If you're on Linux, and are seeing multi-second delays connecting to the serial
console, or are seeing "AT" and other gibberish when you connect, then the
modemmanager service might be interfering. Just remove it; it doesn't have much use
unless you're still using dial-up modems.

To remove modemmanager , type the following command at a shell:

sudo apt purge modemmanager

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the
Serial button, you need to add yourself to a user group to have permission to connect
to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group.
On other Linux distributions, the group you need may be different. See the Advanced
Serial Console on Linux (https://adafru.it/VAO) for details on how to add yourself to
the right group.

If nothing appears in the serial console, it may mean your code is done running
or has no print statements in it. Click into the serial console part of Mu, and press
CTRL+D to reload.

©Adafruit Industries Page 75 of 259

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

Using Something Else?
If you're not using Mu to edit, are using or if for some reason you are not a fan of its
built in serial console, you can run the serial console from a separate program.

Windows requires you to download a terminal program. Check out the Advanced
Serial Console on Windows page for more details. (https://adafru.it/AAH)

MacOS has Terminal built in, though there are other options available for download.
Check the Advanced Serial Console on Mac page for more details. (https://adafru.it/
AAI)

Linux has a terminal program built in, though other options are available for
download. Check the Advanced Serial Console on Linux page for more
details. (https://adafru.it/VAO)

Once connected, you'll see something like the following.

Interacting with the Serial Console
Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, you're going to
edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print
anything you like! Just include your phrase between the quotation marks inside the
parentheses. For example:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello, CircuitPython!")
led.value = True

©Adafruit Industries Page 76 of 259

file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

time.sleep(1)
led.value = False
time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed
text to something else.

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello back to you!")
led.value = True
time.sleep(1)
led.value = False
time.sleep(1)

Keep your serial console window where you can see it. Save your file. You'll see what
the serial console displays when the board reboots. Then you'll see your new change!

The Traceback (most recent call last): is telling you the last thing your board
was doing before you saved your file. This is normal behavior and will happen every
time the board resets. This is really handy for troubleshooting. Let's introduce an error
so you can see how it is used.

©Adafruit Industries Page 77 of 259

Delete the e at the end of True from the line led.value = True so that it says
led.value = Tru

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello back to you!")
led.value = Tru
time.sleep(1)
led.value = False
time.sleep(1)

Save your file. You will notice that your red LED will stop blinking, and you may have a
colored status LED blinking at you. This is because the code is no longer correct and
can no longer run properly. You need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose.
You may have 200 lines of code, and have no idea where your error could be hiding.
This is where the serial console can help. Let's take a look!

The Traceback (most recent call last): is telling you that the last thing it was
able to run was line 10 in your code. The next line is your error: NameError: name
'Tru' is not defined . This error might not mean a lot to you, but combined with
knowing the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the
problem is already. But if you didn't, you'd want to look at line 10 and see if you could
figure it out. If you're still unsure, try googling the error to get some help. In this case,
you know what to look for. You spelled True wrong. Fix the typo and save your file.

©Adafruit Industries Page 78 of 259

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking
again.

The serial console will display any output generated by your code. Some sensors,
such as a humidity sensor or a thermistor, receive data and you can use print
statements to display that information. You can also use print statements for
troubleshooting, which is called "print debugging". Essentially, if your code isn't
working, and you want to know where it's failing, you can put print statements in
various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and
programming!

The REPL
The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL.
The REPL allows you to enter individual lines of code and have them run immediately.
It's really handy if you're running into trouble with a particular program and can't
figure out why. It's interactive so it's great for testing new ideas.

Entering the REPL

To use the REPL, you first need to be connected to the serial console. Once that
connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll
see Press any key to enter the REPL. Use CTRL-D to reload. Follow those
instructions, and press any key on your keyboard.

©Adafruit Industries Page 79 of 259

The Traceback (most recent call last): is telling you the last thing your board
was doing before you pressed Ctrl + C and interrupted it. The KeyboardInterrupt
is you pressing CTRL+C. This information can be handy when troubleshooting, but for
now, don't worry about it. Just note that it is expected behavior.

If your code.py file is empty or does not contain a loop, it will show an empty output
and Code done running. . There is no information about what your board was
doing before you interrupted it because there is no code running.

If you have no code.py on your CIRCUITPY drive, you will enter the REPL immediately
after pressing CTRL+C. Again, there is no information about what your board was
doing before you interrupted it because there is no code running.

Regardless, once you press a key you'll see a >>> prompt welcoming you to the
REPL!

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

©Adafruit Industries Page 80 of 259

This line tells you the version of CircuitPython you're using and when it was released.
Next, it gives you the type of board you're using and the type of microcontroller the
board uses. Each part of this may be different for your board depending on the
versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL

From this prompt you can run all sorts of commands and code. The first thing you'll do
is run help() . This will tell you where to start exploring the REPL. To run code in the
REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

First part of the message is another reference to the version of CircuitPython you're
using. Second, a URL for the CircuitPython related project guides. Then... wait. What's
this? To list built-in modules type `help("modules")`. Remember the
modules you learned about while going through creating code? That's exactly what
this is talking about! This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

©Adafruit Industries Page 81 of 259

This is a list of all the core modules built into CircuitPython, including board .
Remember, board contains all of the pins on the board that you can use in your
code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might
look like nothing happened, but that's not the case! If you recall, the import
statement simply tells the code to expect to do something with that module. In this
case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

This is a list of all of the pins on your board that are available for you to use in your
code. Each board's list will differ slightly depending on the number of pins available.
Do you see LED ? That's the pin you used to blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the
REPL isn't saved anywhere. If you're testing something new that you'd like to keep,
make sure you have it saved somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that
says, "Hello, World." You're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

©Adafruit Industries Page 82 of 259

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire
programs into the REPL to test them. Remember that nothing typed into the REPL is
saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to
see if a few new lines of code will work. It's fantastic for troubleshooting code by
entering it one line at a time and finding out where it fails. It lets you see what
modules are available and explore those modules.

Try typing more into the REPL to see what happens!

Returning to the Serial Console
When you're ready to leave the REPL and return to the serial console, simply press
CTRL+D. This will reload your board and reenter the serial console. You will restart the
program you had running before entering the REPL. In the console window, you'll see
any output from the program you had running. And if your program was affecting
anything visual on the board, you'll see that start up again as well.

You can return to the REPL at any time!

CircuitPython Libraries

Everything typed into the REPL is ephemeral. Once you reload the REPL or return
to the serial console, nothing you typed will be retained in any memory space. So
be sure to save any desired code you wrote somewhere else, or you'll lose it
when you leave the current REPL instance!

As CircuitPython development continues and there are new releases, Adafruit
will stop supporting older releases. Visit https://circuitpython.org/downloads to

©Adafruit Industries Page 83 of 259

https://circuitpython.org/downloads

Each CircuitPython program you run needs to have a lot of information to work. The
reason CircuitPython is so simple to use is that most of that information is stored in
other files and works in the background. These files are called libraries. Some of them
are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder
called lib. Part of what makes CircuitPython so great is its ability to store code
separately from the firmware itself. Storing code separately from the firmware makes
it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If
not, simply create the folder yourself. When you first install CircuitPython, an empty lib
directory will be created for you.

CircuitPython libraries work in the same way as regular Python modules so the Python
docs (https://adafru.it/rar) are an excellent reference for how it all should work. In
Python terms, you can place our library files in the lib directory because it's part of the
Python path by default.

One downside of this approach of separate libraries is that they are not built in. To
use them, one needs to copy them to the CIRCUITPY drive before they can be used.
Fortunately, there is a library bundle.

The bundle and the library releases on GitHub also feature optimized versions of the
libraries with the .mpy file extension. These files take less space on the drive and
have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with
the entire bundle. Therefore, you will need to load the libraries you need when you

download the latest version of CircuitPython for your board. You must download
the CircuitPython Library Bundle that matches your version of CircuitPython.
Please update CircuitPython and then visit https://circuitpython.org/libraries to
download the latest Library Bundle.

©Adafruit Industries Page 84 of 259

https://circuitpython.org/libraries
https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

begin working with your board. You can find example code in the guides for your
board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get
libraries on board.

The Adafruit Learn Guide Project Bundle
The quickest and easiest way to get going with a project from the Adafruit Learn
System is by utilising the Project Bundle. Most guides now have a Download Project
Bundle button available at the top of the full code example embed. This button
downloads all the necessary files, including images, etc., to get the guide project up
and running. Simply click, open the resulting zip, copy over the right files, and you're
good to go!

The first step is to find the Download Project Bundle button in the guide you're
working on.

The Download Project Bundle button downloads a zip file. This zip contains a series
of directories, nested within which is the code.py, any applicable assets like images

The Download Project Bundle button is only available on full demo code
embedded from GitHub in a Learn guide. Code snippets will NOT have the
button available.

When you copy the contents of the Project Bundle to your CIRCUITPY drive, it
will replace all the existing content! If you don't want to lose anything, ensure you
copy your current code to your computer before you copy over the new Project
Bundle content!

©Adafruit Industries Page 85 of 259

or audio, and the lib/ folder containing all the necessary libraries. The following zip
was downloaded from the Piano in the Key of Lime guide.

When you open the zip, you'll find some nested directories. Navigate through them
until you find what you need. You'll eventually find a directory for your CircuitPython
version (in this case, 7.x). In the version directory, you'll find the file and directory you
need: code.py and lib/. Once you find the content you need, you can copy it all over
to your CIRCUITPY drive, replacing any files already on the drive with the files from
the freshly downloaded zip.

Once you copy over all the relevant files, the project should begin running! If you find
that the project is not running as expected, make sure you've copied ALL of the
project files onto your microcontroller board.

That's all there is to using the Project Bundle!

The Adafruit CircuitPython Library Bundle
Adafruit provides CircuitPython libraries for much of the hardware they provide,
including sensors, breakouts and more. To eliminate the need for searching for each

The Piano in the Key of Lime guide was chosen as an example. That guide is
specific to Circuit Playground Express, and cannot be used on all boards. Do not
expect to download that exact bundle and have it work on your non-CPX
microcontroller.

In some cases, there will be other files such as audio or images in the same
directory as code.py and lib/. Make sure you include all the files when you copy
things over!

©Adafruit Industries Page 86 of 259

library individually, the libraries are available together in the Adafruit CircuitPython
Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release by clicking
the button below. The libraries are being constantly updated and improved, so you'll
always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For
example, you would download the 6.x library bundle if you're running any version of
CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython
7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible
mpy errors due to changes in library interfaces possible during major version
changes.

Click to visit circuitpython.org for
the latest Adafruit CircuitPython

Library Bundle
https://adafru.it/ENC

Download the bundle version that matches your CircuitPython firmware version. If
you don't know the version, check the version info in boot_out.txt file on the
CIRCUITPY drive, or the initial prompt in the CircuitPython REPL. For example, if
you're running v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably
don't want that unless you are doing advanced work on libraries.

The CircuitPython Community Library
Bundle
The CircuitPython Community Library Bundle is made up of libraries written and
provided by members of the CircuitPython community. These libraries are often
written when community members encountered hardware not supported in the
Adafruit Bundle, or to support a personal project. The authors all chose to submit
these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit.
As you would with any library, if you run into problems, feel free to file an issue on the
GitHub repo for the library. Bear in mind, though, that most of these libraries are

©Adafruit Industries Page 87 of 259

https://circuitpython.org/libraries

supported by a single person and you should be patient about receiving a response.
Remember, these folks are not paid by Adafruit, and are volunteering their personal
time when possible to provide support.

Downloading the CircuitPython Community Library Bundle

You can download the latest CircuitPython Community Library Bundle release by
clicking the button below. The libraries are being constantly updated and improved,
so you'll always want to download the latest bundle.

Click for the latest CircuitPython
Community Library Bundle release

https://adafru.it/VCn

The link takes you to the latest release of the CircuitPython Community Library
Bundle on GitHub. There are multiple versions of the bundle available. Download the
bundle version that matches your CircuitPython firmware version. If you don't know
the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the
initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,
download the 7.x library bundle.

Understanding the Bundle
After downloading the zip, extract its contents. This is usually done by double clicking
on the zip. On Mac OSX, it places the file in the same directory as the zip.

Open the bundle folder. Inside you'll find two information files, and two folders. One
folder is the lib bundle, and the other folder is the examples bundle.

©Adafruit Industries Page 88 of 259

https://github.com/adafruit/CircuitPython_Community_Bundle/releases

Now open the lib folder. When you open the folder, you'll see a large number of .mpy
files, and folders.

Example Files

All example files from each library are now included in the bundles in an examples
directory (as seen above), as well as an examples-only bundle. These are included for
two main reasons:

Allow for quick testing of devices.
Provide an example base of code, that is easily built upon for individualized
purposes.

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you
extracted from the downloaded zip. Inside you'll find a number of folders and .mpy
files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire
folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the
downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename
it to code.py to run it.

•
•

©Adafruit Industries Page 89 of 259

Understanding Which Libraries to Install
You now know how to load libraries on to your CircuitPython-compatible
microcontroller board. You may now be wondering, how do you know which libraries
you need to install? Unfortunately, it's not always straightforward. Fortunately, there is
an obvious place to start, and a relatively simple way to figure out the rest. First up:
the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or
more import statements. These typically look like the following:

import library_or_module

However, import statements can also sometimes look like the following:

from library_or_module import name

from library_or_module.subpackage import name

from library_or_module import name as local_name

They can also have more complicated formats, such as including a try / except
block, etc.

The important thing to know is that an import statement will always include the
name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or
other code shown here, as the purpose of this section involves only the import list.

import time
import board
import neopixel
import adafruit_lis3dh
import usb_hid
from adafruit_hid.consumer_control import ConsumerControl
from adafruit_hid.consumer_control_code import ConsumerControlCode

If a library has multiple .mpy files contained in a folder, be sure to copy the entire
folder to CIRCUITPY/lib.

•

•
•
•

©Adafruit Industries Page 90 of 259

Keep in mind, not all imported items are libraries. Some of them are almost always
built-in CircuitPython modules. How do you know the difference? Time to visit the
REPL.

In the Interacting with the REPL section (https://adafru.it/Awz) on The REPL
page (https://adafru.it/Awz) in this guide, the help("modules") command is
discussed. This command provides a list of all of the built-in modules available in
CircuitPython for your board. So, if you connect to the serial console on your board,
and enter the REPL, you can run help("modules") to see what modules are
available for your board. Then, as you read through the import statements, you can,
for the purposes of figuring out which libraries to load, ignore the statement that
import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.
Your list may look similar or be anything down to a significant subset of this list for
smaller boards.

Now that you know what you're looking for, it's time to read through the import
statements. The first two, time and board , are on the modules list above, so they're
built-in.

The next one, neopixel , is not on the module list. That means it's your first library!
So, you would head over to the bundle zip you downloaded, and search for neopixel.
There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your
CIRCUITPY drive. The following one, adafruit_lis3dh , is also not on the module
list. Follow the same process for adafruit_lis3dh, where you'll find
adafruit_lis3dh.mpy, and copy that over.

The fifth one is usb_hid , and it is in the modules list, so it is built in. Often all of the
built-in modules come first in the import list, but sometimes they don't! Don't assume

©Adafruit Industries Page 91 of 259

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

that everything after the first library is also a library, and verify each import with the
modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are
formatted like this, the first thing after the from is the library name. In this case, the
library name is adafruit_hid . A search of the bundle will find an
adafruit_hid folder. When a library is a folder, you must copy the entire folder and its
contents as it is in the bundle to the lib folder on your CIRCUITPY drive. In this case,
you would copy the entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit_hid . Sometimes you will
need to import more than one thing from the same library. Regardless of how many
times you import the same library, you only need to load the library by copying over
the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on
your CircuitPython-compatible board!

There are cases, however, where libraries require other libraries internally. The
internally required library is called a dependency. In the event of library
dependencies, the easiest way to figure out what other libraries are required is to
connect to the serial console and follow along with the ImportError printed there.
The following is a very simple example of an ImportError , but the concept is the
same for any missing library.

Example: ImportError Due to Missing
Library
If you choose to load libraries as you need them, or you're starting fresh with an
existing example, you may end up with code that tries to use a library you haven't yet
loaded. This section will demonstrate what happens when you try to utilise a library
that you don't have loaded on your board, and cover the steps required to resolve the
issue.

This demonstration will only return an error if you do not have the required library
loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board
import time
import simpleio

©Adafruit Industries Page 92 of 259

led = simpleio.DigitalOut(board.LED)

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see
what's going on.

You have an ImportError . It says there is no module named 'simpleio' . That's
the one you just included in your code!

Click the link above to download the correct bundle. Extract the lib folder from the
downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file
you're looking for! Follow the steps above to load an individual library file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose
the library that matches the one you're missing.

Library Install on Non-Express Boards
If you have an M0 non-Express board such as Trinket M0, Gemma M0, QT Py M0, or
one of the M0 Trinkeys, you'll want to follow the same steps in the example above to
install libraries as you need them. Remember, you don't need to wait for an
ImportError if you know what library you added to your code. Open the library

©Adafruit Industries Page 93 of 259

bundle you downloaded, find the library you need, and drag it to the lib folder on your
CIRCUITPY drive.

You can still end up running out of space on your M0 non-Express board even if you
only load libraries as you need them. There are a number of steps you can use to try
to resolve this issue. You'll find suggestions on the Troubleshooting page (https://
adafru.it/Den).

Updating CircuitPython Libraries and
Examples
Libraries and examples are updated from time to time, and it's important to update the
files you have on your CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag
the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates
include things like bug fixes and new features. It's important to check in every so
often to see if the libraries you're using have been updated.

CircUp CLI Tool

There is a command line interface (CLI) utility called CircUp (https://adafru.it/Tfi) that
can be used to easily install and update libraries on your device. Follow the directions
on the install page within the CircUp learn guide (https://adafru.it/-Ad). Once you've
got it installed you run the command circup update in a terminal to interactively
update all libraries on the connected CircuitPython device. See the usage page in the
CircUp guide (https://adafru.it/-Ah) for a full list of functionality

Frequently Asked Questions
These are some of the common questions regarding CircuitPython and CircuitPython
microcontrollers.

What are some common acronyms to know?
CP or CPy = CircuitPython (https://adafru.it/KJD)
CPC = Circuit Playground Classic (http://adafru.it/3000) (does not run CircuitPython)

©Adafruit Industries Page 94 of 259

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/usage
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/usage
https://circuitpython.org
https://www.adafruit.com/product/3000

CPX = Circuit Playground Express (http://adafru.it/3333)
CPB = Circuit Playground Bluefruit (http://adafru.it/4333)

Using Older Versions

I have to continue using CircuitPython 7.x or earlier.
Where can I find compatible libraries?

We are no longer building or supporting the CircuitPython 7.x or earlier library
bundles. We highly encourage you to update CircuitPython to the latest
version (https://adafru.it/Em8) and use the current version of the libraries (https://
adafru.it/ENC). However, if for some reason you cannot update, here are the last
available library bundles for older versions:

2.x bundle (https://adafru.it/FJA)
3.x bundle (https://adafru.it/FJB)
4.x bundle (https://adafru.it/QDL)
5.x bundle (https://adafru.it/QDJ)
6.x bundle (https://adafru.it/Xmf)
7.x bundle (https://adafru.it/18e9)

Python Arithmetic

Does CircuitPython support floating-point numbers?
All CircuitPython boards support floating point arithmetic, even if the
microcontroller chip does not support floating point in hardware. Floating point
numbers are stored in 30 bits, with an 8-bit exponent and a 22-bit mantissa. Note
that this is two bits less than standard 32-bit single-precision floats. You will get
about 5-1/2 digits of decimal precision.

(The broadcom port may provide 64-bit floats in some cases.)

As CircuitPython development continues and there are new releases, Adafruit
will stop supporting older releases. Visit https://circuitpython.org/downloads to
download the latest version of CircuitPython for your board. You must download
the CircuitPython Library Bundle that matches your version of CircuitPython.
Please update CircuitPython and then visit https://circuitpython.org/libraries to
download the latest Library Bundle.

•
•
•
•
•
•

©Adafruit Industries Page 95 of 259

https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20211213/adafruit-circuitpython-bundle-6.x-mpy-20211213.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20231003/adafruit-circuitpython-bundle-7.x-mpy-20231003.zip

Does CircuitPython support long integers, like regular
Python?

Python long integers (integers of arbitrary size) are available on most builds, except
those on boards with the smallest available firmware size. On these boards,
integers are stored in 31 bits.

Boards without long integer support are mostly SAMD21 ("M0") boards without an
external flash chip, such as the Adafruit Gemma M0, Trinket M0, QT Py M0, and the
Trinkey series. There are also a number of third-party boards in this category.
There are also a few small STM third-party boards without long integer support.

time.localtime() , time.mktime() , time.time() , and
time.monotonic_ns() are available only on builds with long integers.

Wireless Connectivity

How do I connect to the Internet with CircuitPython?
If you'd like to include WiFi in your project, your best bet is to use a board that is
running natively on ESP32 chipsets - those have WiFi built in!

If your development board has an SPI port and at least 4 additional pins, you can
check out this guide (https://adafru.it/F5X) on using AirLift with CircuitPython - extra
wiring is required and some boards like the MacroPad or NeoTrellis do not have
enough available pins to add the hardware support.

For further project examples, and guides about using AirLift with specific hardware,
check out the Adafruit Learn System (https://adafru.it/VBr).

How do I do BLE (Bluetooth Low Energy) with
CircuitPython?

The nRF52840 and nRF52833 boards have the most complete BLE
implementation. Your program can act as both a BLE central and peripheral. As a
central, you can scan for advertisements, and connect to an advertising board. As a
peripheral, you can advertise, and you can create services available to a central.
Pairing and bonding are supported.

ESP32-C3 and ESP32-S3 boards currently provide an incomplete (https://adafru.it/
11Au) BLE implementation. Your program can act as a central, and connect to a

©Adafruit Industries Page 96 of 259

https://learn.adafruit.com/adafruit-io-basics-airlift
https://learn.adafruit.com/search?q=airlift
https://github.com/adafruit/circuitpython/issues/5926

peripheral. You can advertise, but you cannot create services. You cannot advertise
anonymously. Pairing and bonding are not supported.

The ESP32 could provide a similar implementation, but it is not yet available. Note
that the ESP32-S2 does not have Bluetooth capability.

On most other boards with adequate firmware space, BLE is available for use with
AirLift (https://adafru.it/11Av) or other NINA-FW-based co-processors. Some boards
have this coprocessor on board, such as the PyPortal (https://adafru.it/11Aw).
Currently, this implementation only supports acting as a BLE peripheral. Scanning
and connecting as a central are not yet implemented. Bonding and pairing are not
supported.

Are there other ways to communicate by radio with
CircuitPython?

Check out Adafruit's RFM boards (https://adafru.it/11Ay)for simple radio
communication supported by CircuitPython, which can be used over distances of
100m to over a km, depending on the version. The RFM SAMD21 M0 boards can be
used, but they were not designed for CircuitPython, and have limited RAM and
flash space; using the RFM breakouts or FeatherWings with more capable boards
will be easier.

Asyncio and Interrupts

Is there asyncio support in CircuitPython?
There is support for asyncio starting with CircuitPython 7.1.0, on all boards except
the smallest SAMD21 builds. Read about using it in the Cooperative Multitasking in
CircuitPython (https://adafru.it/XnA) Guide.

Does CircuitPython support interrupts?
No. CircuitPython does not currently support interrupts - please use asyncio for
multitasking / 'threaded' control of your code

Status RGB LED

©Adafruit Industries Page 97 of 259

https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-pyportal/circuitpython-ble
https://www.adafruit.com/?q=rfm&sort=BestMatch
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython

My RGB NeoPixel/DotStar LED is blinking funny colors -
what does it mean?

The status LED can tell you what's going on with your CircuitPython board. Read
more here for what the colors mean! (https://adafru.it/Den)

Memory Issues

What is a MemoryError?
Memory allocation errors happen when you're trying to store too much on the
board. The CircuitPython microcontroller boards have a limited amount of memory
available. You can have about 250 lines of code on the M0 Express boards. If you
try to import too many libraries, a combination of large libraries, or run a program
with too many lines of code, your code will fail to run and you will receive a
MemoryError in the serial console.

What do I do when I encounter a MemoryError?
Try resetting your board. Each time you reset the board, it reallocates the memory.
While this is unlikely to resolve your issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries
are available in the bundle in a .mpy format which takes up less memory than .py
format. Be sure that you're using the latest library bundle (https://adafru.it/uap) for
your version of CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments,
remove extraneous or unneeded code, or any other clean up you can do to
shorten your code. If you're using a lot of functions, you could try moving those
into a separate library, creating a .mpy of that library, and importing it into your
code.

You can turn your entire file into a .mpy and import that into code.py. This means
you will be unable to edit your code live on the board, but it can save you space.

Can the order of my import statements affect memory?
It can because the memory gets fragmented differently depending on allocation
order and the size of objects. Loading .mpy files uses less memory so its
recommended to do that for files you aren't editing.

©Adafruit Industries Page 98 of 259

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

How can I create my own .mpy files?
You can make your own .mpy versions of files with mpy-cross .

You can download mpy-cross for your operating system from here (https://
adafru.it/QDK). Builds are available for Windows, macOS, x64 Linux, and Raspberry
Pi Linux. Choose the latest mpy-cross whose version matches the version of
CircuitPython you are using.

To make a .mpy file, run ./mpy-cross path/to/yourfile.py to create a
yourfile.mpy in the same directory as the original file.

How do I check how much memory I have free?
Run the following to see the number of bytes available for use:

import gc

gc.mem_free()

Unsupported Hardware

Is ESP8266 or ESP32 supported in CircuitPython? Why
not?

We dropped ESP8266 support as of 4.x - For more information please read about it
here (https://adafru.it/CiG)!

As of CircuitPython 8.x we have started to support ESP32 and ESP32-C3 and have
added a WiFi workflow for wireless coding! (https://adafru.it/10JF)

We also support ESP32-S2 & ESP32-S3, which have native USB.

Does Feather M0 support WINC1500?
No, WINC1500 will not fit into the M0 flash space.

Can AVRs such as ATmega328 or ATmega2560 run
CircuitPython?

No.

©Adafruit Industries Page 99 of 259

https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/circuitpython-with-esp32-quick-start

Troubleshooting
From time to time, you will run into issues when working with CircuitPython. Here are
a few things you may encounter and how to resolve them.

Always Run the Latest Version of
CircuitPython and Libraries
As CircuitPython development continues and there are new releases, Adafruit will
stop supporting older releases. You need to update to the latest
CircuitPython. (https://adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your version of
CircuitPython. Please update CircuitPython and then download the latest
bundle (https://adafru.it/ENC).

As new versions of CircuitPython are released, Adafruit will stop providing the
previous bundles as automatically created downloads on the Adafruit CircuitPython
Library Bundle repo. If you must continue to use an earlier version, you can still
download the appropriate version of mpy-cross from the particular release of
CircuitPython on the CircuitPython repo and create your own compatible .mpy library
files. However, it is best to update to the latest for both CircuitPython and the library
bundle.

I have to continue using CircuitPython 7.x or earlier.
Where can I find compatible libraries?

Adafruit is no longer building or supporting the CircuitPython 7.x or earlier library
bundles. You are highly encourged to update CircuitPython to the latest version (http
s://adafru.it/Em8) and use the current version of the libraries (https://adafru.it/ENC).
However, if for some reason you cannot update, links to the previous bundles are
available in the FAQ (https://adafru.it/FwY).

As CircuitPython development continues and there are new releases, Adafruit
will stop supporting older releases. Visit https://circuitpython.org/downloads to
download the latest version of CircuitPython for your board. You must download
the CircuitPython Library Bundle that matches your version of CircuitPython.
Please update CircuitPython and then visit https://circuitpython.org/libraries to
download the latest Library Bundle.

©Adafruit Industries Page 100 of 259

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions#faq-3105289

macOS Sonoma 14.x: Disk Errors Writing to
CIRCUITPY
macOS Sonoma before 14.4 beta 2 takes many seconds to complete writes to small
FAT drives, 8MB or smaller. This causes errors when writing to CIRCUITPY. The best
solution is to remount the CIRCUITPY drive after it is automatically mounted. Or
consider downgrading back to Ventura if that works for you. This problem is being
tracked in CircuitPython GitHub issue 8449 (https://adafru.it/18ea).

Here is a shell script to do this remount conveniently (courtesy @czei in
GitHub (https://adafru.it/18ea)). Copy the code here into a file named, say, remount-
CIRCUITPY.sh. Place the file in a directory on your PATH, or in some other convenient
place.

macOS Sonoma 14.4 beta and after does not have the problem above, but does take
an inordinately long time to write to FAT drives of size 1GB or less (40 times longer
than 2GB drives). This problem is being tracked in CircuitPython GitHub issue
8918 (https://adafru.it/19iD).

#!/bin/sh
#
This works around bug where, by default, macOS 14.x writes part of a file
immediately, and then doesn't update the directory for 20-60 seconds, causing
the file system to be corrupted.
#

disky=`df | grep CIRCUITPY | cut -d" " -f1`
sudo umount /Volumes/CIRCUITPY
sudo mkdir /Volumes/CIRCUITPY
sleep 2
sudo mount -v -o noasync -t msdos $disky /Volumes/CIRCUITPY

Then in a Terminal window, do this to make this script executable:

chmod +x remount-CIRCUITPY.sh

Place the file in a directory on your PATH , or in some other convenient place.

Now, each time you plug in or reset your CIRCUITPY board, run the file remount-
CIRCUITPY.sh. You can run it in a Terminal window or you may be able to place it on
the desktop or in your dock to run it just by double-clicking.

This will be something of a nuisance but it is the safest solution.

This problem is being tracked in this CircuitPython issue (https://adafru.it/18ea).

©Adafruit Industries Page 101 of 259

https://github.com/adafruit/circuitpython/issues/8449
https://github.com/adafruit/circuitpython/issues/8449#issuecomment-1779981373
https://github.com/adafruit/circuitpython/issues/8449#issuecomment-1779981373
https://github.com/adafruit/circuitpython/issues/8918
https://github.com/adafruit/circuitpython/issues/8918
https://github.com/adafruit/circuitpython/issues/8449

Bootloader (boardnameBOOT) Drive Not
Present
You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship with the UF2
bootloader (https://adafru.it/zbX)installed. The Feather M0 Basic, Feather M0
Adalogger, and similar boards use a regular Arduino-compatible bootloader, which
does not show a boardnameBOOT drive.

MakeCode

If you are running a MakeCode (https://adafru.it/zbY) program on Circuit Playground
Express, press the reset button just once to get the CPLAYBOOT drive to show up.
Pressing it twice will not work.

macOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the
BOOT drive. See this forum post (https://adafru.it/sTc) for how to fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade
to Windows 10 with the driver package installed? You don't need to install this
package on Windows 10 for most Adafruit boards. The old version (v1.5) can interfere
with recognizing your device. Go to Settings -> Apps and uninstall all the "Adafruit"
driver programs.

Windows 7 or 8.1

To use a CircuitPython-compatible board with Windows 7 or 8.1, you must install a
driver. Installation instructions are available here (https://adafru.it/VuB).

Windows 7 and 8.1 have reached end of life. It is recommended (https://adafru.it/Amd)
that you upgrade to Windows 10 if possible; an upgrade is probably still free for you.
Check here (https://adafru.it/Amd).

©Adafruit Industries Page 102 of 259

file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/makecode/sharing-and-saving?view=all#step-1-bootloader-mode
https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9

You should now be done! Test by unplugging and replugging the board. You should
see the CIRCUITPY drive, and when you double-click the reset button (single click on
Circuit Playground Express running MakeCode), you should see the
appropriate boardnameBOOT drive.

Let us know in the Adafruit support forums (https://adafru.it/jIf) or on the Adafruit
Discord () if this does not work for you!

Windows Explorer Locks Up When
Accessing boardnameBOOT Drive
On Windows, several third-party programs that can cause issues. The symptom is that
you try to access the boardnameBOOT drive, and Windows or Windows Explorer
seems to lock up. These programs are known to cause trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64.
They acquired hardware to test, and released a beta version that fixes the
problem. This may have been incorporated into the latest release. Please let us
know in the forums if you test this.
Hard Disk Sentinel
Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely.
Disabling some aspects of Kaspersky does not always solve the problem. This
problem has been reported to Kaspersky.
ESET NOD32 anti-virus: There have been problems with at least version
9.0.386.0, solved by uninstallation.

Copying UF2 to boardnameBOOT Drive
Hangs at 0% Copied
On Windows, a Western DIgital (WD) utility that comes with their external USB drives
can interfere with copying UF2 files to the boardnameBOOT drive. Uninstall that
utility to fix the problem.

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0) .
Windows 7 drivers for CircuitPython boards released since then, including
RP2040 boards, are not available. There are no plans to release drivers for new
boards. The boards work fine on Windows 10.

•

•
•

•

©Adafruit Industries Page 103 of 259

https://forums.adafruit.com
https://adafru.it/discord
https://adafru.it/discord

CIRCUITPY Drive Does Not Appear or
Disappears Quickly
Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. There has
not yet been settings change discovered that prevents this. Complete uninstallation
of Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this problem on
Windows 7. The user turned off both Smart Firewall and Auto Protect, and CIRCUITPY
then appeared.

Sophos Endpoint security software can cause CIRCUITPY to disappear (https://
adafru.it/ELr) and the BOOT drive to reappear. It is not clear what causes this
behavior.

Samsung Magician can cause CIRCUITPY to disappear (reported here (https://
adafru.it/18eb) and here (https://adafru.it/18ec)).

Device Errors or Problems on Windows
Windows can become confused about USB device installations. This is particularly
true of Windows 7 and 8.1. It is recommended (https://adafru.it/Amd) that you upgrade
to Windows 10 if possible; an upgrade is probably still free for you: see this
link (https://adafru.it/V2a).

If not, try cleaning up your USB devices. Use Uwe Sieber's Device Cleanup
Tool (https://adafru.it/RWd) (on that page, scroll down to "Device Cleanup Tool").
Download and unzip the tool. Unplug all the boards and other USB devices you want
to clean up. Run the tool as Administrator. You will see a listing like this, probably with
many more devices. It is listing all the USB devices that are not currently attached.

©Adafruit Industries Page 104 of 259

https://forums.adafruit.com/viewtopic.php?f=60&t=187629
https://forums.adafruit.com/viewtopic.php?t=205159
https://forums.adafruit.com/viewtopic.php?p=987596#p987596
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://www.cnet.com/tech/services-and-software/windows-10-download/
https://www.uwe-sieber.de/misc_tools_e.html
https://www.uwe-sieber.de/misc_tools_e.html

Select all the devices you want to remove, and then press Delete. It is usually safe
just to select everything. Any device that is removed will get a fresh install when you
plug it in. Using the Device Cleanup Tool also discards all the COM port assignments
for the unplugged boards. If you have used many Arduino and CircuitPython boards,
you have probably seen higher and higher COM port numbers used, seemingly
without end. This will fix that problem.

Serial Console in Mu Not Displaying
Anything
There are times when the serial console will accurately not display anything, such as,
when no code is currently running, or when code with no serial output is already
running before you open the console. However, if you find yourself in a situation
where you feel it should be displaying something like an error, consider the following.

Depending on the size of your screen or Mu window, when you open the serial
console, the serial console panel may be very small. This can be a problem. A basic
CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
Traceback (most recent call last):
 File "code.py", line 7
SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

©Adafruit Industries Page 105 of 259

Therefore, if your serial console panel is five lines tall or less, you may only see blank
lines or blank lines followed by Press any key to enter the REPL. Use CTRL-D
to reload. . If this is the case, you need to either mouse over the top of the panel to
utilise the option to resize the serial panel, or use the scrollbar on the right side to
scroll up and find your message.

This applies to any kind of serial output whether it be error messages or print
statements. So before you start trying to debug your problem on the hardware side,
be sure to check that you haven't simply missed the serial messages due to serial
output panel height.

code.py Restarts Constantly
CircuitPython will restart code.py if you or your computer writes to something on the
CIRCUITPY drive. This feature is called auto-reload, and lets you test a change to your
program immediately.

Some utility programs, such as backup, anti-virus, or disk-checking apps, will write to
the CIRCUITPY as part of their operation. Sometimes they do this very frequently,
causing constant restarts.

Acronis True Image and related Acronis programs on Windows are known to cause
this problem. It is possible to prevent this by disabling the " (https://adafru.it/
XDZ)Acronis Managed Machine Service Mini" (https://adafru.it/XDZ).

If you cannot stop whatever is causing the writes, you can disable auto-reload by
putting this code in boot.py or code.py:

import supervisor

supervisor.runtime.autoreload = False

CircuitPython RGB Status Light
Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED
on the board that indicates the status of CircuitPython. A few boards designed before
CircuitPython existed, such as the Feather M0 Basic, do not.

©Adafruit Industries Page 106 of 259

https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB
LEDs, but do NOT have a status LED. The LEDs are all green when in the bootloader.
In versions before 7.0.0, they do NOT indicate any status while running
CircuitPython.

CircuitPython 7.0.0 and Later

The status LED blinks were changed in CircuitPython 7.0.0 in order to save battery
power and simplify the blinks. These blink patterns will occur on single color LEDs
when the board does not have any RGB LEDs. Speed and blink count also vary for
this reason.

On start up, the LED will blink YELLOW multiple times for 1 second. Pressing the
RESET button (or on Espressif, the BOOT button) during this time will restart the board
and then enter safe mode. On Bluetooth capable boards, after the yellow blinks, there
will be a set of faster blue blinks. Pressing reset during the BLUE blinks will clear
Bluetooth information and start the device in discoverable mode, so it can be used
with a BLE code editor.

Once started, CircuitPython will blink a pattern every 5 seconds when no user code is
running to indicate why the code stopped:

1 GREEN blink: Code finished without error.
2 RED blinks: Code ended due to an exception. Check the serial console for
details.
3 YELLOW blinks: CircuitPython is in safe mode. No user code was run. Check
the serial console for safe mode reason.

When in the REPL, CircuitPython will set the status LED to WHITE. You can change the
LED color from the REPL. The status indicator will not persist on non-NeoPixel or
DotStar LEDs.

•
•

•

©Adafruit Industries Page 107 of 259

CircuitPython 6.3.0 and earlier

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt, main.py, or main.txt) is running
pulsing GREEN: code.py (etc.) has finished or does not exist
steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting
for a reset to indicate that it should start in safe mode
pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted
steady WHITE: REPL is running
steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate
the line number of the error. The color of the first flash indicates the type of error:

GREEN: IndentationError
CYAN: SyntaxError
WHITE: NameError
ORANGE: OSError
PURPLE: ValueError
YELLOW: other error

These are followed by flashes indicating the line number, including place value.
WHITE flashes are thousands' place, BLUE are hundreds' place, YELLOW are tens'
place, and CYAN are one's place. So for example, an error on line 32 would flash

•
•
•

•
•
•

•
•
•
•
•
•

©Adafruit Industries Page 108 of 259

YELLOW three times and then CYAN two times. Zeroes are indicated by an extra-long
dark gap.

Serial console showing ValueError:
Incompatible .mpy file

This error occurs when importing a module that is stored as a .mpy binary file that
was generated by a different version of CircuitPython than the one its being loaded
into. In particular, the mpy binary format changed between CircuitPython versions 6.x
and 7.x, 2.x and 3.x, and 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to download
a newer version of the library that triggered the error on import . All libraries are
available in the Adafruit bundle (https://adafru.it/y8E).

CIRCUITPY Drive Issues
You may find that you can no longer save files to your CIRCUITPY drive. You may find
that your CIRCUITPY stops showing up in your file explorer, or shows up as
NO_NAME. These are indicators that your filesystem has issues. When the
CIRCUITPY disk is not safely ejected before being reset by the button or being
disconnected from USB, it may corrupt the flash drive. It can happen on Windows,
Mac or Linux, though it is more common on Windows.

©Adafruit Industries Page 109 of 259

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

Be aware, if you have used Arduino to program your board, CircuitPython is no longer
able to provide the USB services. You will need to reload CircuitPython to resolve this
situation.

The easiest first step is to reload CircuitPython. Double-tap reset on the board so you
get a boardnameBOOT drive rather than a CIRCUITPY drive, and copy the latest
version of CircuitPython (.uf2) back to the board. This may restore CIRCUITPY
functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try putting
the board into safe mode.

Safe Mode

Whether you've run into a situation where you can no longer edit your code.py on
your CIRCUITPY drive, your board has gotten into a state where CIRCUITPY is read-
only, or you have turned off the CIRCUITPY drive altogether, safe mode can help.

Safe mode in CircuitPython does not run any user code on startup, and disables auto-
reload. This means a few things. First, safe mode bypasses any code in boot.py
(where you can set CIRCUITPY read-only or turn it off completely). Second, it does
not run the code in code.py. And finally, it does not automatically soft-reload when
data is written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,
safe mode gives you the opportunity to correct it without losing all of the data on the
CIRCUITPY drive.

Entering Safe Mode in CircuitPython 7.x and Later

You can enter safe by pressing reset during the right time when the board boots.
Immediately after the board starts up or resets, it waits one second. On some boards,
the onboard status LED will blink yellow during that time. If you press reset during
that one second period, the board will start up in safe mode. It can be difficult to react
to the yellow LED, so you may want to think of it simply as a "slow" double click of the
reset button. (Remember, a fast double click of reset enters the bootloader.)

Entering Safe Mode in CircuitPython 6.x

You can enter safe by pressing reset during the right time when the board boots..
Immediately after the board starts up or resets, it waits 700ms. On some boards, the

©Adafruit Industries Page 110 of 259

onboard status LED (highlighted in green above) will turn solid yellow during this time.
If you press reset during that 700ms, the board will start up in safe mode. It can be
difficult to react to the yellow LED, so you may want to think of it simply as a slow
double click of the reset button. (Remember, a fast double click of reset enters the
bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse
yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently
blink yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.
Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.
Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not
run until you press the reset button, or unplug and plug in your board, to get out of
safe mode.

At this point, you'll want to remove any user code in code.py and, if present, the
boot.py file from CIRCUITPY. Once removed, tap the reset button, or unplug and plug
in your board, to restart CircuitPython. This will restart the board and may resolve
your drive issues. If resolved, you can begin coding again as usual.

If safe mode does not resolve your issue, the board must be completely erased and
CircuitPython must be reloaded onto the board.

You WILL lose everything on the board when you complete the following steps. If
possible, make a copy of your code before continuing.

©Adafruit Industries Page 111 of 259

To erase CIRCUITPY: storage.erase_filesystem()

CircuitPython includes a built-in function to erase and reformat the filesystem. If you
have a version of CircuitPython older than 2.3.0 on your board, you can update to the
newest version (https://adafru.it/Amd) to do this.

Connect to the CircuitPython REPL (https://adafru.it/Bec) using Mu or a terminal
program.
Type the following into the REPL:

>>> import storage
>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Erase CIRCUITPY Without Access to the REPL

If you can't access the REPL, or you're running a version of CircuitPython previous to
2.3.0 and you don't want to upgrade, there are options available for some specific
boards.

The options listed below are considered to be the "old way" of erasing your board.
The method shown above using the REPL is highly recommended as the best
method for erasing your board.

For the specific boards listed below:

If the board you are trying to erase is listed below, follow the steps to use the file to
erase your board.

 1. Download the correct erase file:

Circuit Playground Express
https://adafru.it/AdI

Feather M0 Express
https://adafru.it/AdJ

1.

2.

If at all possible, it is recommended to use the REPL to erase your CIRCUITPY
drive. The REPL method is explained above.

©Adafruit Industries Page 112 of 259

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098

Feather M4 Express
https://adafru.it/EVK

Metro M0 Express
https://adafru.it/AdK

Metro M4 Express QSPI Eraser
https://adafru.it/EoM

Trellis M4 Express (QSPI)
https://adafru.it/DjD

Grand Central M4 Express (QSPI)
https://adafru.it/DBA

PyPortal M4 Express (QSPI)
https://adafru.it/Eca

Circuit Playground Bluefruit (QSPI)
https://adafru.it/Gnc

Monster M4SK (QSPI)
https://adafru.it/GAN

PyBadge/PyGamer QSPI Eraser.UF2
https://adafru.it/GAO

CLUE_Flash_Erase.UF2
https://adafru.it/Jat

Matrix_Portal_M4_(QSPI).UF2
https://adafru.it/Q5B

RP2040 boards (flash_nuke.uf2)
https://adafru.it/18ed

©Adafruit Industries Page 113 of 259

https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613
https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%28QSPI%29.UF2?1611076081
https://cdn-learn.adafruit.com/assets/assets/000/101/659/original/flash_nuke.uf2

 2. Double-click the reset button on the board to bring up the boardnameBOOT
drive.
 3. Drag the erase .uf2 file to the boardnameBOOT drive.
 4. The status LED will turn yellow or blue, indicating the erase has started.
 5. After approximately 15 seconds, the status LED will light up green. On the
NeoTrellis M4 this is the first NeoPixel on the grid
 6. Double-click the reset button on the board to bring up
the boardnameBOOT drive.
 7. Drag the appropriate latest release of CircuitPython (https://adafru.it/Em8) .uf2
file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer
again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps
starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board,
check out the installation page (https://adafru.it/Amd). You'll also need to load your
code and reinstall your libraries!

For SAMD21 non-Express boards that have a UF2
bootloader:

Any SAMD21-based microcontroller that does not have external flash available is
considered a SAMD21 non-Express board. Non-Express boards that have a UF2
bootloader include Trinket M0, GEMMA M0, QT Py M0, and the SAMD21-based
Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps to erase
your board.

 1. Download the erase file:

SAMD21 non-Express Boards
https://adafru.it/VB-

 2. Double-click the reset button on the board to bring up the boardnameBOOT
drive.
 3. Drag the erase .uf2 file to the boardnameBOOT drive.
 4. The boot LED will start flashing again, and the boardnameBOOT drive will

©Adafruit Industries Page 114 of 259

https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2

reappear.
 5. Drag the appropriate latest release CircuitPython (https://adafru.it/Em8) .uf2
file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer
again.

If you haven't already downloaded the latest release of CircuitPython for your board,
check out the installation page (https://adafru.it/Amd) YYou'll also need to load your
code and reinstall your libraries!

For SAMD21 non-Express boards that do not have a UF2
bootloader:

Any SAMD21-based microcontroller that does not have external flash available is
considered a SAMD21 non-Express board. Non-Express boards that do not have a
UF2 bootloader include the Feather M0 Basic Proto, Feather Adalogger, or the
Arduino Zero.

If you are trying to erase a non-Express board that does not have a UF2 bootloader,
follow these directions to reload CircuitPython using bossac (https://adafru.it/Bed),
which will erase and re-create CIRCUITPY.

Running Out of File Space on SAMD21 Non-
Express Boards
Any SAMD21-based microcontroller that does not have external flash available is
considered a SAMD21 non-Express board. This includes boards like the Trinket M0,
GEMMA M0, QT Py M0, and the SAMD21-based Trinkey boards.

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its
likely you'll run out of space but don't panic! There are a number of ways to free up
space.

©Adafruit Industries Page 115 of 259

https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there
are libraries in the lib folder that you aren't using anymore or test code that isn't in
use. Don't delete the lib folder completely, though, just remove what you don't need.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you
don't need it or have already installed it. It's ~12KiB or so.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the
recommendation is to indent code with four spaces for every indent. In general, that
is recommended too. However, one trick to storing more human-readable code is to
use a single tab character for indentation. This approach uses 1/4 of the space for
indentation and can be significant when you're counting bytes.

On MacOS?

MacOS loves to generate hidden files. Luckily you can disable some of the extra
hidden files that macOS adds by running a few commands to disable search indexing
and create zero byte placeholders. Follow the steps below to maximize the amount of
space available on macOS.

Prevent & Remove MacOS Hidden Files

First find the volume name for your board. With the board plugged in run this
command in a terminal to list all the volumes:

ls -l /Volumes

©Adafruit Industries Page 116 of 259

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full
path to the volume is the /Volumes/CIRCUITPY path.

Now follow the steps from this question (https://adafru.it/u1c) to run these terminal
commands that stop hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY
cd /Volumes/CIRCUITPY
rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}
mkdir .fseventsd
touch .fseventsd/no_log .metadata_never_index .Trashes
cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your
board's volume if it's different. At this point all the hidden files should be cleared from
the board and some hidden files will be prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders
mentioned above will be created automatically if you erase and reformat the
filesystem. WARNING: Save your files first! Do this in the REPL:

>>> import storage

>>> storage.erase_filesystem()

However there are still some cases where hidden files will be created by MacOS. In
particular if you copy a file that was downloaded from the internet it will have special
metadata that MacOS stores as a hidden file. Luckily you can run a copy command
from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on macOS
you need to be careful to copy files to the board with a special command that
prevents future hidden files from being created. Unfortunately you cannot use drag
and drop copy in Finder because it will still create these hidden extended attribute
files in some cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For
example to copy a file_name.mpy file to the board use a command like:

cp -X file_name.mpy /Volumes/CIRCUITPY

(Replace file_name.mpy with the name of the file you want to copy.)

©Adafruit Industries Page 117 of 259

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

Or to copy a folder and all of the files and folders contained within, use a command
like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before
copying.

if lib does not exist, you'll create a file named lib !
cp -X file_name.mpy /Volumes/CIRCUITPY/lib
This is safer, and will complain if a lib folder does not exist.
cp -X file_name.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden
files here's how to do so. First, move into the Volumes/ directory with cd /
Volumes/ , and then list the amount of space used on the CIRCUITPY drive with the
df command.

That's not very much space left! The next step is to show a list of the files currently on
the CIRCUITPY drive, including the hidden files, using the ls command. You cannot
use Finder to do this, you must do it via command line!

There are a few of the hidden files that MacOS loves to generate, all of which begin
with a ._ before the file name. Remove the ._ files using the rm command. You can
remove them all once by running rm CIRCUITPY/._* . The * acts as a wildcard to
apply the command to everything that begins with ._ at the same time.

©Adafruit Industries Page 118 of 259

Finally, you can run df again to see the current space used.

Nice! You have 12Ki more than before! This space can now be used for libraries and
code!

Device Locked Up or Boot Looping
In rare cases, it may happen that something in your code.py or boot.py files causes
the device to get locked up, or even go into a boot loop. A boot loop occurs when the
board reboots repeatedly and never fully loads. These are not caused by your
everyday Python exceptions, typically it's the result of a deeper problem within
CircuitPython. In this situation, it can be difficult to recover your device if CIRCUITPY
is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery
option. When the device boots up in safe mode it will not run the code.py or boot.py
scripts, but will still connect the CIRCUITPY drive so that you can remove or modify
those files as needed.

The method used to manually enter safe mode can be different for different devices.
It is also very similar to the method used for getting into bootloader mode, which is a
different thing. So it can take a few tries to get the timing right. If you end up in
bootloader mode, no problem, you can try again without needing to do anything else.

For most devices:
Press the reset button, and then when the RGB status LED blinks yellow, press the
reset button again. Since your reaction time may not be that fast, try a "slow" double
click, to catch the yellow LED on the second click.

For ESP32-S2 based devices:
Press and release the reset button, then press and release the boot button about 3/4
of a second later.

Refer to the diagrams above for boot sequence details.

©Adafruit Industries Page 119 of 259

"Uninstalling" CircuitPython
A lot of our boards can be used with multiple programming languages. For example,
the Circuit Playground Express can be used with MakeCode, Code.org CS
Discoveries, CircuitPython and Arduino.

Maybe you tried CircuitPython and want to go back to MakeCode or Arduino? Not a
problem. You can always remove or reinstall CircuitPython whenever you want! Heck,
you can change your mind every day!

There is nothing to uninstall. CircuitPython is "just another program" that is loaded
onto your board. You simply load another program (Arduino or MakeCode) and it will
overwrite CircuitPython.

Backup Your Code

Before replacing CircuitPython, don't forget to make a backup of the code you have
on the CIRCUITPY drive. That means your code.py any other files, the lib folder etc.
You may lose these files when you remove CircuitPython, so backups are key! Just
drag the files to a folder on your laptop or desktop computer like you would with any
USB drive.

Moving Circuit Playground Express to
MakeCode
On the Circuit Playground Express (this currently does NOT apply to Circuit
Playground Bluefruit), if you want to go back to using MakeCode, it's really easy. Visit
makecode.adafruit.com (https://adafru.it/wpC) and find the program you want to
upload. Click Download to download the .uf2 file that is generated by MakeCode.

Now double-click your CircuitPython board until you see the onboard LED(s) turn
green and the ...BOOT directory shows up.

©Adafruit Industries Page 120 of 259

https://makecode.adafruit.com

Then find the downloaded MakeCode .uf2 file and drag it to the CPLAYBOOT drive.

Your MakeCode is now running and CircuitPython has been removed. Going forward
you only have to single click the reset button to get to CPLAYBOOT. This is an
idiosyncrasy of MakeCode.

Moving to Arduino
If you want to use Arduino instead, you just use the Arduino IDE to load an Arduino
program. Here's an example of uploading a simple "Blink" Arduino program, but you
don't have to use this particular program.

Start by plugging in your board, and double-clicking reset until you get the green
onboard LED(s).

©Adafruit Industries Page 121 of 259

Within Arduino IDE, select the matching board, say Circuit Playground Express.

Select the correct matching Port:

Create a new simple Blink sketch example:

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

Make sure the LED(s) are still green, then click Upload to upload Blink. Once it has
uploaded successfully, the serial Port will change so re-select the new Port!

Once Blink is uploaded you should no longer need to double-click to enter
bootloader mode. Arduino will automatically reset when you upload.

©Adafruit Industries Page 122 of 259

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and
great for learning. It runs on microcontrollers and works out of the box. You can plug it
in and get started with any text editor. The best part? CircuitPython comes with an
amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for
anyone to use, edit, copy and improve upon. This also means CircuitPython becomes
better because of you being a part of it. Whether this is your first microcontroller
board or you're a seasoned software engineer, you have something important to offer
the Adafruit CircuitPython community. This page highlights some of the many ways
you can be a part of it!

Adafruit Discord

©Adafruit Industries Page 123 of 259

The Adafruit Discord server is the best place to start. Discord is where the community
comes together to volunteer and provide live support of all kinds. From general
discussion to detailed problem solving, and everything in between, Discord is a digital
maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your
needs. Each channel is shown on Discord as "#channelname". There's the #help-with-
projects channel for assistance with your current project or help coming up with ideas
for your next one. There's the #show-and-tell channel for showing off your newest
creation. Don't be afraid to ask a question in any channel! If you're unsure, #general is
a great place to start. If another channel is more likely to provide you with a better
answer, someone will guide you.

The help with CircuitPython channel is where to go with your CircuitPython questions.
#help-with-circuitpython is there for new users and developers alike so feel free to
ask a question or post a comment! Everyone of any experience level is welcome to
join in on the conversation. Your contributions are important! The #circuitpython-dev
channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord.
Supporting others doesn't always mean answering questions. Join in celebrating
successes! Celebrate your mistakes! Sometimes just hearing that someone else has
gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your
granddaughter to.

Visit https://adafru.it/discord ()to sign up for Discord. Everyone is looking forward to
meeting you!

©Adafruit Industries Page 124 of 259

https://adafru.it/discord

CircuitPython.org

Beyond the Adafruit Learn System, which you are viewing right now, the best place to
find information about CircuitPython is circuitpython.org (https://adafru.it/KJD).
Everything you need to get started with your new microcontroller and beyond is
available. You can do things like download CircuitPython for your
microcontroller (https://adafru.it/Em8) or download the latest CircuitPython Library
bundle (https://adafru.it/ENC), or check out which single board computers support
Blinka (https://adafru.it/EA8). You can also get to various other CircuitPython related
things like Awesome CircuitPython or the Python for Microcontrollers newsletter. This
is all incredibly useful, but it isn't necessarily community related. So why is it included
here? The Contributing page (https://adafru.it/VD7).

CircuitPython itself is written in C. However, all of the Adafruit CircuitPython libraries
are written in Python. If you're interested in contributing to CircuitPython on the
Python side of things, check out circuitpython.org/contributing (https://adafru.it/VD7).
You'll find information pertaining to every Adafruit CircuitPython library GitHub
repository, giving you the opportunity to join the community by finding a contributing
option that works for you.

Note the date on the page next to Current Status for:

©Adafruit Industries Page 125 of 259

https://circuitpython.org
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/blinka
https://circuitpython.org/blinka
https://circuitpython.org/contributing
https://circuitpython.org/contributing

If you submit any contributions to the libraries, and do not see them reflected on the
Contributing page, it could be that the job that checks for new updates hasn't yet run
for today. Simply check back tomorrow!

Now, a look at the different options.

Pull Requests

The first tab you'll find is a list of open pull requests.

GitHub pull requests, or PRs, are opened when folks have added something to an
Adafruit CircuitPython library GitHub repo, and are asking for Adafruit to add, or
merge, their changes into the main library code. For PRs to be merged, they must first
be reviewed. Reviewing is a great way to contribute! Take a look at the list of open
pull requests, and pick one that interests you. If you have the hardware, you can test
code changes. If you don't, you can still check the code updates for syntax. In the
case of documentation updates, you can verify the information, or check it for spelling
and grammar. Once you've checked out the update, you can leave a comment letting
us know that you took a look. Once you've done that for a while, and you're more
comfortable with it, you can consider joining the CircuitPythonLibrarians review team.
The more reviewers we have, the more authors we can support. Reviewing is a crucial
part of an open source ecosystem, CircuitPython included.

Open Issues

The second tab you'll find is a list of open issues.

©Adafruit Industries Page 126 of 259

GitHub issues are filed for a number of reasons, including when there is a bug in the
library or example code, or when someone wants to make a feature request. Issues
are a great way to find an opportunity to contribute directly to the libraries by
updating code or documentation. If you're interested in contributing code or
documentation, take a look at the open issues and find one that interests you.

If you're not sure where to start, you can search the issues by label. Labels are
applied to issues to make the goal easier to identify at a first glance, or to indicate the
difficulty level of the issue. Click on the dropdown next to "Sort by issue labels" to see
the list of available labels, and click on one to choose it.

If you're new to everything, new to contributing to open source, or new to
contributing to the CircuitPython project, you can choose "Good first issue". Issues
with that label are well defined, with a finite scope, and are intended to be easy for
someone new to figure out.

If you're looking for something a little more complicated, consider "Bug" or
"Enhancement". The Bug label is applied to issues that pertain to problems or failures
found in the library. The Enhancement label is applied to feature requests.

©Adafruit Industries Page 127 of 259

Don't let the process intimidate you. If you're new to Git and GitHub, there is a
guide (https://adafru.it/Dkh) to walk you through the entire process. As well, there are
always folks available on Discord () to answer questions.

Library Infrastructure Issues

The third tab you'll find is a list of library infrastructure issues.

This section is generated by a script that runs checks on the libraries, and then
reports back where there may be issues. It is made up of a list of subsections each
containing links to the repositories that are experiencing that particular issue. This
page is available mostly for internal use, but you may find some opportunities to
contribute on this page. If there's an issue listed that sounds like something you could
help with, mention it on Discord, or file an issue on GitHub indicating you're working
to resolve that issue. Others can reply either way to let you know what the scope of it
might be, and help you resolve it if necessary.

CircuitPython Localization

The fourth tab you'll find is the CircuitPython Localization tab.

If you speak another language, you can help translate CircuitPython! The translations
apply to informational and error messages that are within the CircuitPython core. It
means that folks who do not speak English have the opportunity to have these
messages shown to them in their own language when using CircuitPython. This is
incredibly important to provide the best experience possible for all users.

©Adafruit Industries Page 128 of 259

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https:adafru.it/discord

CircuitPython uses Weblate to translate, which makes it much simpler to contribute
translations. You will still need to know some CircuitPython-specific practices and a
few basics about coding strings, but as with any CircuitPython contributions, folks are
there to help.

Regardless of your skill level, or how you want to contribute to the CircuitPython
project, there is an opportunity available. The Contributing page (https://adafru.it/VD7)
is an excellent place to start!

Adafruit GitHub

Whether you're just beginning or are life-long programmer who would like to
contribute, there are ways for everyone to be a part of the CircuitPython project. The
CircuitPython core is written in C. The libraries are written in Python. GitHub is the
best source of ways to contribute to the CircuitPython core (https://adafru.it/tB7), and
the CircuitPython libraries (https://adafru.it/VFv). If you need an account, visit https://
github.com/ (https://adafru.it/d6C) and sign up.

If you're new to GitHub or programming in general, there are great opportunities for
you. For the CircuitPython core, head over to the CircuitPython repository on GitHub,
click on "Issues (https://adafru.it/tBb)", and you'll find a list that includes issues labeled
"good first issue (https://adafru.it/188e)". For the libraries, head over to the
Contributing page Issues list (https://adafru.it/VFv), and use the drop down menu to
search for "good first issue (https://adafru.it/VFw)". These issues are things that have
been identified as something that someone with any level of experience can help
with. These issues include options like updating documentation, providing feedback,
and fixing simple bugs. If you need help getting started with GitHub, there is an
excellent guide on Contributing to CircuitPython with Git and GitHub (https://adafru.it/
Dkh).

©Adafruit Industries Page 129 of 259

https://circuitpython.org/contributing
https://github.com/adafruit/circuitpython
https://circuitpython.org/contributing/open-issues
https://github.com/
https://github.com/
https://github.com/adafruit/circuitpython/issues
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github

Already experienced and looking for a challenge? Checkout the rest of either issues
list and you'll find plenty of ways to contribute. You'll find all sorts of things, from new
driver requests, to library bugs, to core module updates. There's plenty of
opportunities for everyone at any level!

When working with or using CircuitPython or the CircuitPython libraries, you may find
problems. If you find a bug, that's great! The team loves bugs! Posting a detailed issue
to GitHub is an invaluable way to contribute to improving CircuitPython. For
CircuitPython itself, file an issue here (https://adafru.it/tBb). For the libraries, file an
issue on the specific library repository on GitHub. Be sure to include the steps to
replicate the issue as well as any other information you think is relevant. The more
detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of
CircuitPython or a library onto your CircuitPython hardware, and use it. Let us know
about any problems you find by posting a new issue to GitHub. Software testing on
both stable and unstable releases is a very important part of contributing
CircuitPython. The developers can't possibly find all the problems themselves! They
need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and
much more. If you have questions, remember that Discord and the Forums are both
there for help!

Adafruit Forums

The Adafruit Forums (https://adafru.it/jIf) are the perfect place for support. Adafruit
has wonderful paid support folks to answer any questions you may have. Whether
your hardware is giving you issues or your code doesn't seem to be working, the
forums are always there for you to ask. You need an Adafruit account to post to the
forums. You can use the same account you use to order from Adafruit.

©Adafruit Industries Page 130 of 259

https://github.com/adafruit/circuitpython/issues
https://forums.adafruit.com

While Discord may provide you with quicker responses than the forums, the forums
are a more reliable source of information. If you want to be certain you're getting an
Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything
Adafruit. The Adafruit CircuitPython (https://adafru.it/xXA) category under "Supported
Products & Projects" is the best place to post your CircuitPython questions.

Be sure to include the steps you took to get to where you are. If it involves wiring,
post a picture! If your code is giving you trouble, include your code in your post!
These are great ways to make sure that there's enough information to help you with
your issue.

You might think you're just getting started, but you definitely know something that
someone else doesn't. The great thing about the forums is that you can help others
too! Everyone is welcome and encouraged to provide constructive feedback to any of
the posted questions. This is an excellent way to contribute to the community and
share your knowledge!

Read the Docs

Read the Docs (https://adafru.it/Beg) is a an excellent resource for a more detailed
look at the CircuitPython core and the CircuitPython libraries. This is where you'll find

©Adafruit Industries Page 131 of 259

https://forums.adafruit.com/viewforum.php?f=60
https://circuitpython.readthedocs.io/

things like API documentation and example code. For an in depth look at viewing and
understanding Read the Docs, check out the CircuitPython Documentation (https://
adafru.it/VFx) page!

CircuitPython Essentials

You've gone through the Welcome to CircuitPython guide (https://adafru.it/cpy-
welcome). You've already gotten everything setup, and you've gotten CircuitPython
running. Great! Now what? CircuitPython Essentials!

There are a number of core modules built into CircuitPython and commonly used
libraries available. This guide will introduce you to these and show you an example of
how to use each one.

Each section will present you with a piece of code designed to work with different
boards, and explain how to use the code with each board. These examples work with
any board designed for CircuitPython, including Circuit Playground Express, Trinket
M0, Gemma M0, QT Py, ItsyBitsy M0 Express, ItsyBitsy M4 Express, Feather M0
Express, Feather M4 Express, Metro M4 Express, Metro M0 Express, Trellis M4
Express, and Grand Central M4 Express.

©Adafruit Industries Page 132 of 259

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-documentation
file:///home/welcome-to-circuitpython

Some examples require external components, such as switches or sensors. You'll find
wiring diagrams where applicable to show you how to wire up the necessary
components to work with each example.

Let's get started learning the CircuitPython Essentials!

CircuitPython Pins and Modules
CircuitPython is designed to run on microcontrollers and allows you to interface with
all kinds of sensors, inputs and other hardware peripherals. There are tons of guides
showing how to wire up a circuit, and use CircuitPython to, for example, read data
from a sensor, or detect a button press. Most CircuitPython code includes hardware
setup which requires various modules, such as board or digitalio . You import
these modules and then use them in your code. How does CircuitPython know to look
for hardware in the specific place you connected it, and where do these modules
come from?

This page explains both. You'll learn how CircuitPython finds the pins on your
microcontroller board, including how to find the available pins for your board and
what each pin is named. You'll also learn about the modules built into CircuitPython,
including how to find all the modules available for your board.

CircuitPython Pins
When using hardware peripherals with a CircuitPython compatible microcontroller,
you'll almost certainly be utilising pins. This section will cover how to access your
board's pins using CircuitPython, how to discover what pins and board-specific
objects are available in CircuitPython for your board, how to use the board-specific
objects, and how to determine all available pin names for a given pin on your board.

import board

When you're using any kind of hardware peripherals wired up to your microcontroller
board, the import list in your code will include import board . The board module is
built into CircuitPython, and is used to provide access to a series of board-specific
objects, including pins. Take a look at your microcontroller board. You'll notice that
next to the pins are pin labels. You can always access a pin by its pin label. However,
there are almost always multiple names for a given pin.

©Adafruit Industries Page 133 of 259

To see all the available board-specific objects and pins for your board, enter the REPL
(>>>) and run the following commands:

import board
dir(board)

Here is the output for the QT Py SAMD21. You may have a different board, and this
list will vary, based on the board.

The following pins have labels on the physical QT Py SAMD21 board: A0, A1, A2, A3,
SDA, SCL, TX, RX, SCK, MISO, and MOSI. You see that there are many more entries
available in board than the labels on the QT Py.

You can use the pin names on the physical board, regardless of whether they seem to
be specific to a certain protocol.

For example, you do not have to use the SDA pin for I2C - you can use it for a button
or LED.

On the flip side, there may be multiple names for one pin. For example, on the QT Py
SAMD21, pin A0 is labeled on the physical board silkscreen, but it is available in
CircuitPython as both A0 and D0 . For more information on finding all the names for a
given pin, see the What Are All the Available Pin Names? (https://adafru.it/QkA)
section below.

The results of dir(board) for CircuitPython compatible boards will look similar to
the results for the QT Py SAMD21 in terms of the pin names, e.g. A0, D0, etc.
However, some boards, for example, the Metro ESP32-S2, have different styled pin
names. Here is the output for the Metro ESP32-S2.

Note that most of the pins are named in an IO# style, such as IO1 and IO2. Those pins
on the physical board are labeled only with a number, so an easy way to know how to
access them in CircuitPython, is to run those commands in the REPL and find the pin
naming scheme.

©Adafruit Industries Page 134 of 259

https://learn.adafruit.com/circuitpython-essentials/circuitpython-pins-and-modules#what-are-all-the-available-names-3082670-14

I2C, SPI, and UART

You'll also see there are often (but not always!) three special board-specific objects
included: I2C , SPI , and UART - each one is for the default pin-set used for each of
the three common protocol busses they are named for. These are called singletons.

What's a singleton? When you create an object in CircuitPython, you are instantiating
('creating') it. Instantiating an object means you are creating an instance of the object
with the unique values that are provided, or "passed", to it.

For example, When you instantiate an I2C object using the busio module, it expects
two pins: clock and data, typically SCL and SDA. It often looks like this:

i2c = busio.I2C(board.SCL, board.SDA)

Then, you pass the I2C object to a driver for the hardware you're using. For example,
if you were using the TSL2591 light sensor and its CircuitPython library, the next line
of code would be:

tsl2591 = adafruit_tsl2591.TSL2591(i2c)

However, CircuitPython makes this simpler by including the I2C singleton in the
board module. Instead of the two lines of code above, you simply provide the
singleton as the I2C object. So if you were using the TSL2591 and its CircuitPython
library, the two above lines of code would be replaced with:

tsl2591 = adafruit_tsl2591.TSL2591(board.I2C())

This eliminates the need for the busio module, and simplifies the code. Behind the
scenes, the board.I2C() object is instantiated when you call it, but not before, and
on subsequent calls, it returns the same object. Basically, it does not create an object
until you need it, and provides the same object every time you need it. You can call
board.I2C() as many times as you like, and it will always return the same object.

If your code is failing to run because it can't find a pin name you provided, verify
that you have the proper pin name by running these commands in the REPL.

The board.I2C(), board.SPI(), and board.UART() singletons do not exist on all
boards. They exist if there are board markings for the default pins for those
devices.

©Adafruit Industries Page 135 of 259

What Are All the Available Names?

Many pins on CircuitPython compatible microcontroller boards have multiple names,
however, typically, there's only one name labeled on the physical board. So how do
you find out what the other available pin names are? Simple, with the following script!
Each line printed out to the serial console contains the set of names for a particular
pin.

On a microcontroller board running CircuitPython, first, connect to the serial console.

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Essentials/Pin_Map_Script/ and then click on
the directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2020 anecdata for Adafruit Industries
SPDX-FileCopyrightText: 2021 Neradoc for Adafruit Industries
SPDX-FileCopyrightText: 2021-2023 Kattni Rembor for Adafruit Industries
SPDX-FileCopyrightText: 2023 Dan Halbert for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials Pin Map Script"""
import microcontroller
import board
try:

import cyw43 # raspberrypi
except ImportError:

cyw43 = None

board_pins = []
for pin in dir(microcontroller.pin):

if (isinstance(getattr(microcontroller.pin, pin), microcontroller.Pin) or
(cyw43 and isinstance(getattr(microcontroller.pin, pin), cyw43.CywPin))):
pins = []

The UART/SPI/I2C singletons will use the 'default' bus pins for each board - often
labeled as RX/TX (UART), MOSI/MISO/SCK (SPI), or SDA/SCL (I2C). Check your
board documentation/pinout for the default busses.

©Adafruit Industries Page 136 of 259

for alias in dir(board):
if getattr(board, alias) is getattr(microcontroller.pin, pin):

pins.append(f"board.{alias}")
Add the original GPIO name, in parentheses.
if pins:

Only include pins that are in board.
pins.append(f"({str(pin)})")
board_pins.append(" ".join(pins))

for pins in sorted(board_pins):
print(pins)

Here is the result when this script is run on QT Py SAMD21:

Each line represents a single pin. Find the line containing the pin name that's labeled
on the physical board, and you'll find the other names available for that pin. For
example, the first pin on the board is labeled A0. The first line in the output is
board.A0 board.D0 (PA02) . This means that you can access pin A0 in
CircuitPython using both board.A0 and board.D0 .

The pins in parentheses are the microcontroller pin names. See the next section for
more info on those.

You'll notice there are two "pins" that aren't labeled on the board but appear in the
list: board.NEOPIXEL and board.NEOPIXEL_POWER . Many boards have several of
these special pins that give you access to built-in board hardware, such as an LED or
an on-board sensor. The QT Py SAMD21 only has one on-board extra piece of
hardware, a NeoPixel LED, so there's only the one available in the list. But you can
also control whether or not power is applied to the NeoPixel, so there's a separate pin
for that.

That's all there is to figuring out the available names for a pin on a compatible
microcontroller board in CircuitPython!

Microcontroller Pin Names

The pin names available to you in the CircuitPython board module are not the same
as the names of the pins on the microcontroller itself. The board pin names are

©Adafruit Industries Page 137 of 259

aliases to the microcontroller pin names. If you look at the datasheet for your
microcontroller, you'll likely find a pinout with a series of pin names, such as "PA18" or
"GPIO5". If you want to get to the actual microcontroller pin name in CircuitPython,
you'll need the microcontroller.pin module. As with board , you can run
dir(microcontroller.pin) in the REPL to receive a list of the microcontroller pin
names.

CircuitPython Built-In Modules
There is a set of modules used in most CircuitPython programs. One or more of these
modules is always used in projects involving hardware. Often hardware requires
installing a separate library from the Adafruit CircuitPython Bundle. But, if you try to
find board or digitalio in the same bundle, you'll come up lacking. So, where do
these modules come from? They're built into CircuitPython! You can find an
comprehensive list of built-in CircuitPython modules and the technical details of their
functionality from CircuitPython here (https://adafru.it/QkB) and the Python-like
modules included here (https://adafru.it/QkC). However, not every module is available
for every board due to size constraints or hardware limitations. How do you find out
what modules are available for your board?

There are two options for this. You can check the support matrix (https://adafru.it/
N2a), and search for your board by name. Or, you can use the REPL.

Plug in your board, connect to the serial console and enter the REPL. Type the
following command.

help("modules")

That's it! You now know two ways to find all of the modules built into CircuitPython for
your compatible microcontroller board.

©Adafruit Industries Page 138 of 259

https://circuitpython.readthedocs.io/en/latest/shared-bindings/index.html#modules
https://circuitpython.readthedocs.io/en/latest/docs/library/index.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html#

CircuitPython Built-Ins
CircuitPython comes 'with the kitchen sink' - a lot of the things you know and love
about classic Python 3 (sometimes called CPython) already work. There are a few
things that don't but we'll try to keep this list updated as we add more capabilities!

Thing That Are Built In and Work

Flow Control

All the usual if , elif , else , for , while work just as expected.

Math

import math will give you a range of handy mathematical functions.

>>> dir(math)

['__name__', 'e', 'pi', 'sqrt', 'pow', 'exp', 'log', 'cos', 'sin',

'tan', 'acos', 'asin', 'atan', 'atan2', 'ceil', 'copysign', 'fabs',

'floor', 'fmod', 'frexp', 'ldexp', 'modf', 'isfinite', 'isinf',

'isnan', 'trunc', 'radians', 'degrees']

CircuitPython supports 30-bit wide floating point values so you can use int and
float whenever you expect.

Tuples, Lists, Arrays, and Dictionaries

You can organize data in () , [] , and {} including strings, objects, floats, etc.

Classes, Objects and Functions

We use objects and functions extensively in our libraries so check out one of our
many examples like this MCP9808 library (https://adafru.it/BfQ) for class examples.

This is not an exhaustive list! It's simply some of the many features you can use.

©Adafruit Industries Page 139 of 259

https://github.com/adafruit/Adafruit_CircuitPython_MCP9808/blob/master/adafruit_mcp9808.py

Lambdas

Yep! You can create function-functions with lambda just the way you like em:

>>> g = lambda x: x**2

>>> g(8)

64

Random Numbers

To obtain random numbers:

import random

random.random() will give a floating point number from 0 to 1.0 .

random.randint(min, max) will give you an integer number between min and
max .

CircuitPython Digital In & Out
The first part of interfacing with hardware is being able to manage digital inputs and
outputs. With CircuitPython, it's super easy!

This example shows how to use both a digital input and output. You can use a switch
input with pullup resistor (built in) to control a digital output - the built in red LED.

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Essentials/CircuitPython_Digitial_In_Out/ and
then click on the directory that matches the version of CircuitPython you're using and
copy the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 140 of 259

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials Digital In Out example"""
import time
import board
from digitalio import DigitalInOut, Direction, Pull

LED setup.
led = DigitalInOut(board.LED)
For QT Py M0. QT Py M0 does not have a D13 LED, so you can connect an external
LED instead.
led = DigitalInOut(board.SCK)
led.direction = Direction.OUTPUT

For Gemma M0, Trinket M0, Metro M0 Express, ItsyBitsy M0 Express, Itsy M4
Express, QT Py M0
switch = DigitalInOut(board.D2)
switch = DigitalInOut(board.D5) # For Feather M0 Express, Feather M4 Express
switch = DigitalInOut(board.D7) # For Circuit Playground Express
switch.direction = Direction.INPUT
switch.pull = Pull.UP

while True:
We could also do "led.value = not switch.value"!
if switch.value:

led.value = False
else:

led.value = True

time.sleep(0.01) # debounce delay

Note that we made the code a little less "Pythonic" than necessary. The if/else
block could be replaced with a simple led.value = not switch.value but we
wanted to make it super clear how to test the inputs. The interpreter will read the
digital input when it evaluates switch.value .

For Gemma M0, Trinket M0, Metro M0 Express, Metro M4 Express, ItsyBitsy M0
Express, ItsyBitsy M4 Express, no changes to the initial example are needed.

For Feather M0 Express and Feather M4 Express, comment out switch =
DigitalInOut(board.D2) (and/or switch = DigitalInOut(board.D7)

Note: To "comment out" a line, put a # and a space before it. To "uncomment" a
line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 141 of 259

depending on what changes you already made), and uncomment switch =
DigitalInOut(board.D5) .

For Circuit Playground Express, you'll need to comment out switch =
DigitalInOut(board.D2) (and/or switch = DigitalInOut(board.D5)
depending on what changes you already made), and uncomment switch =
DigitalInOut(board.D7) .

For QT Py M0, you'll need to comment out led = DigitalInOut(board.LED) and
uncomment led = DigitalInOut(board.SCK) . The switch code remains the same.

To find the pin or pad suggested in the code, see the list below. For the boards that
require wiring, wire up a switch (also known as a tactile switch, button or push-
button), following the diagram for guidance. Press or slide the switch, and the
onboard red LED will turn on and off.

Note that on the M0/SAMD based CircuitPython boards, at least, you can also have
internal pulldowns with Pull.DOWN and if you want to turn off the pullup/pulldown just
assign switch.pull = None.

Find the pins!

The list below shows each board, explains the location of the Digital pin suggested
for use as input, and the location of the D13 LED.

QT Py M0 does not have a little red LED built in. Therefore, you must connect an
external LED for this example to work. See below for a wiring diagram illustrating
how to connect an external LED to a QT Py M0.

©Adafruit Industries Page 142 of 259

Circuit Playground Express

We're going to use the switch, which is pin
D7, and is located between the battery
connector and the reset switch on the
board. The LED is labeled D13 and is
located next to the USB micro port.

To use D7, comment out the current pin
setup line, and uncomment the line
labeled for Circuit Playground Express.
See the details above!

Trinket M0

D2 is connected to the blue wire, labeled
"2", and located between "3V" and "1" on
the board. The LED is labeled "13" and is
located next to the USB micro port.

Gemma M0

D2 is an alligator-clip-friendly pad labeled
both "D2" and "A1", shown connected to
the blue wire, and is next to the USB micro
port. The LED is located next to the "GND"
label on the board, above the "On/Off"
switch.

Use alligator clips to connect your switch
to your Gemma M0!

©Adafruit Industries Page 143 of 259

https://learn.adafruit.com//assets/51501
https://learn.adafruit.com//assets/51501
https://learn.adafruit.com//assets/51505
https://learn.adafruit.com//assets/51505
https://learn.adafruit.com//assets/51506
https://learn.adafruit.com//assets/51506

QT Py M0

D2 is labeled A2, shown connected to the
blue wire, and is near the USB port
between A1 and A3.

There is no little red LED built-in to the QT
Py M0. Therefore, you must connect an
external LED for this example to work.

To wire up an external LED:

LED + to QT Py SCK
LED - to 470Ω resistor
470Ω resistor to QT Py GND
The button and the LED share the same
GND pin.

To use the external LED, comment out the
current LED setup line, and uncomment
the line labeled for QT Py M0. See the
details above!

Feather M0 Express and Feather M4
Express

D5 is labeled "5" and connected to the
blue wire on the board. The LED is labeled
"#13" and is located next to the USB micro
port.

To use D5, comment out the current pin
setup line, and uncomment the line
labeled for Feather M0 Express. See the
details above!

©Adafruit Industries Page 144 of 259

https://learn.adafruit.com//assets/97805
https://learn.adafruit.com//assets/97805
https://learn.adafruit.com//assets/51502
https://learn.adafruit.com//assets/51502

ItsyBitsy M0 Express and ItsyBitsy M4
Express

D2 is labeled "2", located between the
"MISO" and "EN" labels, and is connected
to the blue wire on the board. The LED is
located next to the reset button between
the "3" and "4" labels on the board.

Metro M0 Express and Metro M4 Express

D2 is located near the top left corner, and
is connected to the blue wire. The LED is
labeled "L" and is located next to the USB
micro port.

Read the Docs

For a more in-depth look at what digitalio can do, check out the DigitalInOut
page in Read the Docs (https://adafru.it/C4c).

CircuitPython Analog In
This example shows you how you can read the analog voltage on the A1 pin on your
board.

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Essentials/CircuitPython_Analogin/ and then
click on the directory that matches the version of CircuitPython you're using and copy
the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 145 of 259

https://learn.adafruit.com//assets/51503
https://learn.adafruit.com//assets/51503
https://learn.adafruit.com//assets/51504
https://learn.adafruit.com//assets/51504
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/DigitalInOut.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/DigitalInOut.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/DigitalInOut.html

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials Analog In example"""
import time
import board
from analogio import AnalogIn

analog_in = AnalogIn(board.A1)

def get_voltage(pin):
return (pin.value * 3.3) / 65536

while True:
print((get_voltage(analog_in),))
time.sleep(0.1)

Creating the analog input

analog1in = AnalogIn(board.A1)

Creates an object and connects the object to A1 as an analog input.

get_voltage Helper

get_voltage(pin) is our little helper program. By default, analog readings will
range from 0 (minimum) to 65535 (maximum). This helper will convert the 0-65535
reading from pin.value and convert it a 0-3.3V voltage reading.

Make sure you're running the latest CircuitPython! If you are not, you may run
into an error: "AttributeError: 'module' object has no attribute 'A1'". If you receive
this error, first make sure you're running the latest version of CircuitPython!

©Adafruit Industries Page 146 of 259

Main Loop

The main loop is simple. It prints out the voltage as floating point values by calling
get_voltage on our analog object. Connect to the serial console to see the results.

Changing It Up

By default the pins are floating so the voltages will vary. While connected to the serial
console, try touching a wire from A1 to the GND pin or 3Vo pin to see the voltage
change.

You can also add a potentiometer to control the voltage changes. From the
potentiometer to the board, connect the left pin to ground, the middle pin to A1, and
the right pin to 3V. If you're using Mu editor, you can see the changes as you rotate
the potentiometer on the plotter like in the image above! (Click the Plotter icon at the
top of the window to open the plotter.)

When you turn the knob of the potentiometer, the wiper rotates left and right,
increasing or decreasing the resistance. This, in turn, changes the analog voltage
level that will be read by your board on A1.

©Adafruit Industries Page 147 of 259

Wire it up

The list below shows wiring diagrams to help find the correct pins and wire up the
potentiometer, and provides more information about analog pins on your board!

Circuit Playground Express

A1 is located on the right side of the board.
There are multiple ground and 3V pads
(pins).

Your board has 7 analog pins that can be
used for this purpose. For the full list, see
the pinout page (https://adafru.it/AM9) on
the main guide.

Trinket M0

A1 is labeled as 2! It's located between
"1~" and "3V" on the same side of the
board as the little red LED. Ground is
located on the opposite side of the board.
3V is located next to 2, on the same end of
the board as the reset button.

You have 5 analog pins you can use. For
the full list, see the pinouts page (https://
adafru.it/AMd) on the main guide.

©Adafruit Industries Page 148 of 259

https://learn.adafruit.com//assets/51607
https://learn.adafruit.com//assets/51607
file:///home/adafruit-circuit-playground-express/pinouts
https://learn.adafruit.com//assets/51618
https://learn.adafruit.com//assets/51618
file:///home/adafruit-trinket-m0-circuitpython-arduino/pinouts

Gemma M0

A1 is located near the top of the board of
the board to the left side of the USB Micro
port. Ground is on the other side of the
USB port from A1. 3V is located to the left
side of the battery connector on the
bottom of the board.

Your board has 3 analog pins. For the full
list, see the pinout page (https://adafru.it/
AMa) on the main guide.

QT Py M0

A1, shown connected to the blue wire, is
near the USB port between A0 and A2.
Ground is on the opposite side of the QT
Py, near the USB port, between 3V and 5V.
3V is the next pin, between GND and MO.

Your board has 10 analog pins. For the full
list, see the pinouts page (https://adafru.it/
OeY) in the main guide.

©Adafruit Industries Page 149 of 259

https://learn.adafruit.com//assets/51611
https://learn.adafruit.com//assets/51611
file:///home/adafruit-gemma-m0/pinouts
https://learn.adafruit.com//assets/97844
https://learn.adafruit.com//assets/97844
https://learn.adafruit.com/adafruit-qt-py/pinouts

Feather M0 Express and Feather M4
Express

A1 is located along the edge opposite the
battery connector. There are multiple
ground pins. 3V is located along the same
edge as A1, and is next to the reset button.

Your board has 6 analog pins you can use.
For the full list, see the pinouts
page (https://adafru.it/AMc) on the main
guide.

ItsyBitsy M0 Express and ItsyBitsy M4
Express

A1 is located in the middle of the board,
near the "A" in "Adafruit". Ground is labled
"G" and is located next to "BAT", near the
USB Micro port. 3V is found on the
opposite side of the USB port from
Ground, next to RST.

You have 6 analog pins you can use. For a
full list, see the pinouts page (https://
adafru.it/BMg) on the main guide.

©Adafruit Industries Page 150 of 259

https://learn.adafruit.com//assets/51616
https://learn.adafruit.com//assets/51616
file:///home/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/adafruit2-pinouts
file:///home/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/adafruit2-pinouts
https://learn.adafruit.com//assets/51619
https://learn.adafruit.com//assets/51619
https://learn.adafruit.com/introducing-itsy-bitsy-m0/pinouts

Metro M0 Express and Metro M4 Express

A1 is located on the same side of the
board as the barrel jack. There are
multiple ground pins available. 3V is
labeled "3.3" and is located in the center
of the board on the same side as the
barrel jack (and as A1).

Your Metro M0 Express board has 6
analog pins you can use. For the full list,
see the pinouts page (https://adafru.it/
AMb) on the main guide.

Your Metro M4 Express board has 6
analog pins you can use. For the full list,
see the pinouts page (https://adafru.it/B1O)
on the main guide.

Reading Analog Pin Values
The get_voltage() helper used in the potentiometer example above reads the raw
analog pin value and converts it to a voltage level. You can, however, directly read an
analog pin value in your code by using pin.value . For example, to simply read the
raw analog pin value from the potentiometer, you would run the following code:

import time
import board
from analogio import AnalogIn

analog_in = AnalogIn(board.A1)

while True:
 print(analog_in.value)
 time.sleep(0.1)

This works with any analog pin or input. Use the <pin_name>.value to read the raw
value and utilise it in your code.

©Adafruit Industries Page 151 of 259

https://learn.adafruit.com//assets/52733
https://learn.adafruit.com//assets/52733
file:///home/adafruit-metro-m0-express-designed-for-circuitpython/pinouts
file:///home/adafruit-metro-m4-express-featuring-atsamd51/pinouts

CircuitPython Analog Out
This example shows you how you can set the DAC (true analog output) on pin A0.

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Essentials/CircuitPython_AnalogOut/ and then
click on the directory that matches the version of CircuitPython you're using and copy
the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Analog Out example"""
import board
from analogio import AnalogOut

analog_out = AnalogOut(board.A0)

while True:
Count up from 0 to 65535, with 64 increment
which ends up corresponding to the DAC's 10-bit range
for i in range(0, 65535, 64):

analog_out.value = i

Creating an analog output

analog_out = AnalogOut(A0)

Creates an object analog_out and connects the object to A0, the only DAC pin
available on both the M0 and the M4 boards. (The M4 has two, A0 and A1.)

A0 is the only true analog output on the M0 boards. No other pins do true analog
output!

©Adafruit Industries Page 152 of 259

Setting the analog output

The DAC on the SAMD21 is a 10-bit output, from 0-3.3V. So in theory you will have a
resolution of 0.0032 Volts per bit. To allow CircuitPython to be general-purpose
enough that it can be used with chips with anything from 8 to 16-bit DACs, the DAC
takes a 16-bit value and divides it down internally.

For example, writing 0 will be the same as setting it to 0 - 0 Volts out.

Writing 5000 is the same as setting it to 5000 / 64 = 78, and 78 / 1024 * 3.3V = 0.25V
output.

Writing 65535 is the same as 1023 which is the top range and you'll get 3.3V output

Main Loop

The main loop is fairly simple, it goes through the entire range of the DAC, from 0 to
65535, but increments 64 at a time so it ends up clicking up one bit for each of the
10-bits of range available.

CircuitPython is not terribly fast, so at the fastest update loop you'll get 4 Hz. The DAC
isn't good for audio outputs as-is.

Express boards like the Circuit Playground Express, Metro M0 Express, ItsyBitsy M0
Express, ItsyBitsy M4 Express, Metro M4 Express, Feather M4 Express, or Feather
M0 Express have more code space and can perform audio playback capabilities via
the DAC. QT Py M0, Gemma M0 and Trinket M0 cannot!

Check out the Audio Out section of this guide (https://adafru.it/BRj) for examples!

©Adafruit Industries Page 153 of 259

https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out

Find the pin

Use the diagrams below to find the A0 pin marked with a magenta arrow!

Circuit Playground Express

A0 is located between VOUT and A1 near
the battery port.

Trinket M0

A0 is labeled "1~" on Trinket! A0 is located
between "0" and "2" towards the middle of
the board on the same side as the red
LED.

Gemma M0

A0 is located in the middle of the right
side of the board next to the On/Off
switch.

©Adafruit Industries Page 154 of 259

https://learn.adafruit.com//assets/51696
https://learn.adafruit.com//assets/51696
https://learn.adafruit.com//assets/51697
https://learn.adafruit.com//assets/51697
https://learn.adafruit.com//assets/51698
https://learn.adafruit.com//assets/51698

QT Py M0

A0 is located next to the USB port, by the
"QT" label on the board silk.

Feather M0 Express

A0 is located between GND and A1 on the
opposite side of the board from the
battery connector, towards the end with
the Reset button.

Feather M4 Express

A0 is located between GND and A1 on the
opposite side of the board from the
battery connector, towards the end with
the Reset button, and the pin pad has left
and right white parenthesis markings
around it

©Adafruit Industries Page 155 of 259

https://learn.adafruit.com//assets/97800
https://learn.adafruit.com//assets/97800
https://learn.adafruit.com//assets/51699
https://learn.adafruit.com//assets/51699
https://learn.adafruit.com//assets/57531
https://learn.adafruit.com//assets/57531

ItsyBitsy M0 Express

A0 is located between VHI and A1, near
the "A" in "Adafruit", and the pin pad has
left and right white parenthesis markings
around it.

ItsyBitsy M4 Express

A0 is located between VHI and A1, and the
pin pad has left and right white
parenthesis markings around it.

Metro M0 Express

A0 is between VIN and A1, and is located
along the same side of the board as the
barrel jack adapter towards the middle of
the headers found on that side of the
board.

©Adafruit Industries Page 156 of 259

https://learn.adafruit.com//assets/51700
https://learn.adafruit.com//assets/51700
https://learn.adafruit.com//assets/57532
https://learn.adafruit.com//assets/57532
https://learn.adafruit.com//assets/51701
https://learn.adafruit.com//assets/51701

Metro M4 Express

A0 is between VIN and A1, and is located
along the same side of the board as the
barrel jack adapter towards the middle of
the headers found on that side of the
board.

On the Metro M4 Express, there are TWO
true analog outputs: A0 and A1.

CircuitPython PWM
Your board has pwmio support, which means you can PWM LEDs, control servos,
beep piezos, and manage "pulse train" type devices like DHT22 and Infrared.

Nearly every pin has PWM support! For example, all ATSAMD21 board have an A0 pin
which is 'true' analog out and does not have PWM support.

PWM with Fixed Frequency

This example will show you how to use PWM to fade the little red LED on your board.

The following illustrates how to connect an external LED to a QT Py M0.

The QT Py M0 does not have a little red LED. Therefore, you must connect an
external LED and edit this example for it to work. Follow the wiring diagram and
steps below to run this example on QT Py M0.

©Adafruit Industries Page 157 of 259

https://learn.adafruit.com//assets/53100
https://learn.adafruit.com//assets/53100

LED + to QT Py SCK
LED - to 470Ω resistor
470Ω resistor to QT Py GND

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Essentials/CircuitPython_PWM/ and then click
on the directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials: PWM with Fixed Frequency example."""
import time
import board
import pwmio

LED setup for most CircuitPython boards:
led = pwmio.PWMOut(board.LED, frequency=5000, duty_cycle=0)
LED setup for QT Py M0:
led = pwmio.PWMOut(board.SCK, frequency=5000, duty_cycle=0)

while True:
for i in range(100):

PWM LED up and down
if i < 50:

led.duty_cycle = int(i * 2 * 65535 / 100) # Up
else:

led.duty_cycle = 65535 - int((i - 50) * 2 * 65535 / 100) # Down
time.sleep(0.01)

©Adafruit Industries Page 158 of 259

https://learn.adafruit.com//assets/97845
https://learn.adafruit.com//assets/97845

To use with QT Py M0, you must comment out led = pwmio.PWMOut(board.LED,
frequency=5000, duty_cycle=0) and uncomment led =
pwmio.PWMOut(board.SCK, frequency=5000, duty_cycle=0) . Your setup lines
should look like this for the example to work with QT Py M0:

LED setup for most CircuitPython boards:
led = pwmio.PWMOut(board.LED, frequency=5000, duty_cycle=0)
LED setup for QT Py M0:
led = pwmio.PWMOut(board.SCK, frequency=5000, duty_cycle=0)

Create a PWM Output

led = pwmio.PWMOut(board.LED, frequency=5000, duty_cycle=0)

Since we're using the onboard LED, we'll call the object led , use pwmio.PWMOut to
create the output and pass in the D13 LED pin to use.

Main Loop

The main loop uses range() to cycle through the loop. When the range is below 50,
it PWMs the LED brightness up, and when the range is above 50, it PWMs the
brightness down. This is how it fades the LED brighter and dimmer!

The time.sleep() is needed to allow the PWM process to occur over a period of
time. Otherwise it happens too quickly for you to see!

PWM Output with Variable Frequency

Fixed frequency outputs are great for pulsing LEDs or controlling servos. But if you
want to make some beeps with a piezo, you'll need to vary the frequency.

The following example uses pwmio to make a series of tones on a piezo.

To use with any of the M0 boards, no changes to the following code are needed.

Remember: To "comment out" a line, put a # and a space before it. To
"uncomment" a line, remove the # + space from the beginning of the line.

Remember: To "comment out" a line, put a # and a space before it. To
"uncomment" a line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 159 of 259

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Essentials/CircuitPython_PWM_Piezo/ and
then click on the directory that matches the version of CircuitPython you're using and
copy the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

To use with the Metro M4 Express, ItsyBitsy M4 Express or the Feather M4 Express,
you must comment out the piezo = pwmio.PWMOut(board.A2, duty_cycle=0,
frequency=440, variable_frequency=True) line and uncomment the piezo =
pwmio.PWMOut(board.A1, duty_cycle=0, frequency=440,

variable_frequency=True) line. A2 is not a supported PWM pin on the M4
boards!

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials PWM with variable frequency piezo example"""
import time
import board
import pwmio

For the M0 boards:
piezo = pwmio.PWMOut(board.A2, duty_cycle=0, frequency=440, variable_frequency=True)

For the M4 boards:
piezo = pwmio.PWMOut(board.A1, duty_cycle=0, frequency=440,
variable_frequency=True)

while True:
for f in (262, 294, 330, 349, 392, 440, 494, 523):

piezo.frequency = f
piezo.duty_cycle = 65535 // 2 # On 50%
time.sleep(0.25) # On for 1/4 second
piezo.duty_cycle = 0 # Off
time.sleep(0.05) # Pause between notes

time.sleep(0.5)

The following example uses a nice little helper in the simpleio library that makes a
tone for you on a piezo with a single command.

To use with any of the M0 boards, no changes to the following code are needed.

©Adafruit Industries Page 160 of 259

To use with the Metro M4 Express, ItsyBitsy M4 Express or the Feather M4 Express,
you must comment out the simpleio.tone(board.A2, f, 0.25) line and
uncomment the simpleio.tone(board.A1, f, 0.25) line. A2 is not a supported
PWM pin on the M4 boards!

Installing Project Code

To use with CircuitPython, you need to first install a few libraries, into the lib folder on
your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file. Extract the contents of the zip file, open the directory
CircuitPython_Essentials/CircuitPython_PWM_Piezo_simpleio/ and then click on the
directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2017 Limor Fried for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials PWM piezo simpleio example"""
import time
import board
import simpleio

while True:
for f in (262, 294, 330, 349, 392, 440, 494, 523):

For the M0 boards:
simpleio.tone(board.A2, f, 0.25) # on for 1/4 second
For the M4 boards:
simpleio.tone(board.A1, f, 0.25) # on for 1/4 second
time.sleep(0.05) # pause between notes

time.sleep(0.5)

As you can see, it's much simpler!

©Adafruit Industries Page 161 of 259

Wire it up

Use the diagrams below to help you wire up your piezo. Attach one leg of the piezo
to pin A2 on the M0 boards or A1 on the M4 boards, and the other leg to ground. It
doesn't matter which leg is connected to which pin. They're interchangeable!

Circuit Playground Express

Use alligator clips to attach A2 and any
one of the GND to different legs of the
piezo.

CPX has PWM on the following pins: A1,
A2, A3, A6, RX, LIGHT, A8, TEMPERATURE,
A9, BUTTON_B, D5, SLIDE_SWITCH, D7,
D13, REMOTEIN, IR_RX, REMOTEOUT,
IR_TX, IR_PROXIMITY,
MICROPHONE_CLOCK,
MICROPHONE_DATA,
ACCELEROMETER_INTERRUPT,
ACCELEROMETER_SDA,
ACCELEROMETER_SCL,
SPEAKER_ENABLE.

There is NO PWM on: A0, SPEAKER, A4,
SCL, A5, SDA, A7, TX, BUTTON_A, D4,
NEOPIXEL, D8, SCK, MOSI, MISO,
FLASH_CS.

©Adafruit Industries Page 162 of 259

https://learn.adafruit.com//assets/51861
https://learn.adafruit.com//assets/51861

Trinket M0

Note: A2 on Trinket is also labeled Digital
"0"!

Use jumper wires to connect GND and
D0 to different legs of the piezo.

Trinket has PWM available on the following
pins: D0, A2, SDA, D2, A1, SCL, MISO, D4,
A4, TX, MOSI, D3, A3, RX, SCK, D13,
APA102_MOSI, APA102_SCK.

There is NO PWM on: A0, D1.

Gemma M0

Use alligator clips to attach A2 and GND to
different legs on the piezo.

Gemma has PWM available on the
following pins: A1, D2, RX, SCL, A2, D0,
TX, SDA, L, D13, APA102_MOSI,
APA102_SCK.

There is NO PWM on: A0, D1.

©Adafruit Industries Page 163 of 259

https://learn.adafruit.com//assets/51864
https://learn.adafruit.com//assets/51864
https://learn.adafruit.com//assets/51866
https://learn.adafruit.com//assets/51866

QT Py M0

Use jumper wires to attach A2 and GND to
different legs of the piezo.

The QT Py M0 has PWM on the following
pins: A2, A3, A6, A7, A8, A9, A10, D2, D3,
D4, D5, D6, D7, D8, D9, D10, SCK, MISO,
MOSI, NEOPIXEL, RX, TX, SCL, SDA.

There is NO A0, A1, D0, D1,
NEOPIXEL_POWER.

Feather M0 Express

Use jumper wires to attach A2 and one of
the two GND to different legs of the piezo.

Feather M0 Express has PWM on the
following pins: A2, A3, A4, SCK, MOSI,
MISO, D0, RX, D1, TX, SDA, SCL, D5, D6,
D9, D10, D11, D12, D13, NEOPIXEL.

There is NO PWM on: A0, A1, A5.

©Adafruit Industries Page 164 of 259

https://learn.adafruit.com//assets/97846
https://learn.adafruit.com//assets/97846
https://learn.adafruit.com//assets/51868
https://learn.adafruit.com//assets/51868

Feather M4 Express

Use jumper wires to attach A1 and one of
the two GND to different legs of the piezo.

To use A1, comment out the current pin
setup line, and uncomment the line
labeled for the M4 boards. See the details
above!

Feather M4 Express has PWM on the
following pins: A1, A3, SCK, D0, RX, D1, TX,
SDA, SCL, D4, D5, D6, D9, D10, D11, D12,
D13.

There is NO PWM on: A0, A2, A4, A5,
MOSI, MISO.

ItsyBitsy M0 Express

Use jumper wires to attach A2 and G to
different legs of the piezo.

ItsyBitsy M0 Express has PWM on the
following pins: D0, RX, D1, TX, D2, D3, D4,
D5, D6, D7, D8, D9, D10, D11, D12, D13, L,
A2, A3, A4, MOSI, MISO, SCK, SCL, SDA,
APA102_MOSI, APA102_SCK.

There is NO PWM on: A0, A1, A5.

©Adafruit Industries Page 165 of 259

https://learn.adafruit.com//assets/57590
https://learn.adafruit.com//assets/57590
https://learn.adafruit.com//assets/51870
https://learn.adafruit.com//assets/51870

ItsyBitsy M4 Express

Use jumper wires to attach A1 and G to
different legs of the piezo.

To use A1, comment out the current pin
setup line, and uncomment the line
labeled for the M4 boards. See the details
above!

ItsyBitsy M4 Express has PWM on the
following pins: A1, D0, RX, D1, TX, D2, D4,
D5, D7, D9, D10, D11, D12, D13, SDA, SCL.

There is NO PWM on: A2, A3, A4, A5, D3,
SCK, MOSI, MISO.

Metro M0 Express

Use jumper wires to connect A2 and any
one of the GND to different legs on the
piezo.

Metro M0 Express has PWM on the
following pins: A2, A3, A4, D0, RX, D1, TX,
D2, D3, D4, D5, D6, D7, D8, D9, D10, D11,
D12, D13, SDA, SCL, NEOPIXEL, SCK,
MOSI, MISO.

There is NO PWM on: A0, A1, A5,
FLASH_CS.

©Adafruit Industries Page 166 of 259

https://learn.adafruit.com//assets/57591
https://learn.adafruit.com//assets/57591
https://learn.adafruit.com//assets/51871
https://learn.adafruit.com//assets/51871

Metro M4 Express

Use jumper wires to connect A1 and any
one of the GND to different legs on the
piezo.

To use A1, comment out the current pin
setup line, and uncomment the line
labeled for the M4 boards. See the details
above!

Metro M4 Express has PWM on: A1, A5,
D0, RX, D1, TX, D2, D3, D4, D5, D6, D7, D8,
D9, D10, D11, D12, D13, SDA, SCK, MOSI,
MISO

There is No PWM on: A0, A2, A3, A4, SCL,
AREF, NEOPIXEL, LED_RX, LED_TX.

Where's My PWM?

Want to check to see which pins have PWM yourself? We've written this handy script!
It attempts to setup PWM on every pin available, and lets you know which ones work
and which ones don't. Check it out!

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Essentials/PWM_Test_Script/ and then click on
the directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 167 of 259

https://learn.adafruit.com//assets/53102
https://learn.adafruit.com//assets/53102

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials PWM pin identifying script"""
import board
import pwmio

for pin_name in dir(board):
pin = getattr(board, pin_name)
try:

p = pwmio.PWMOut(pin)
p.deinit()
print("PWM on:", pin_name) # Prints the valid, PWM-capable pins!

except ValueError: # This is the error returned when the pin is invalid.
print("No PWM on:", pin_name) # Prints the invalid pins.

except RuntimeError: # Timer conflict error.
print("Timers in use:", pin_name) # Prints the timer conflict pins.

except TypeError: # Error returned when checking a non-pin object in
dir(board).

pass # Passes over non-pin objects in dir(board).

CircuitPython Servo
In order to use servos, we take advantage of pwmio . Now, in theory, you could just
use the raw pwmio calls to set the frequency to 50 Hz and then set the pulse widths.
But we would rather make it a little more elegant and easy!

So, instead we will use adafruit_motor which manages servos for you quite nicely!
adafruit_motor is a library so be sure to grab it from the library bundle if you have
not yet (https://adafru.it/ENC)! If you need help installing the library, check out the
CircuitPython Libraries page (https://adafru.it/ABU).

Servos come in two types:

A standard hobby servo - the horn moves 180 degrees (90 degrees in each
direction from zero degrees).
A continuous servo - the horn moves in full rotation like a DC motor. Instead of
an angle specified, you set a throttle value with 1.0 being full forward, 0.5 being
half forward, 0 being stopped, and -1 being full reverse, with other values
between.

•

•

©Adafruit Industries Page 168 of 259

https://circuitpython.org/libraries
https://circuitpython.org/libraries
file:///home/welcome-to-circuitpython/circuitpython-libraries

Servo Wiring

The connections for a servo are the same for standard servos and continuous rotation
servos.

Connect the servo's brown or black ground wire to ground on the CircuitPython
board.

Connect the servo's red power wire to 5V power. USB power can in some cases good
for a servo or two. But some USB ports supply limited current, and operating a servo
from the USB 5V line may cause a power brownout and board crash.

For more servos, you'll need an external battery pack or external power supply. Do
not use 3.3V for powering a servo!

Connect the servo's yellow or white signal wire to the control/data pin, in this case A1
or A2 but you can use any PWM-capable pin.

For example, to wire a servo to Trinket,
connect the ground wire to GND, the
power wire to USB, and the signal wire to
0.

Remember, A2 on Trinket is labeled "0".

Servos will only work on PWM-capable pins! Check your board details to verify
which pins have PWM outputs.

©Adafruit Industries Page 169 of 259

https://learn.adafruit.com//assets/51927
https://learn.adafruit.com//assets/51927

For Gemma, use jumper wire alligator clips
to connect the ground wire to GND, the
power wire to VOUT, and the signal wire
to A2.

For Circuit Playground Express and
Circuit Playground Bluefruit, use jumper
wire alligator clips to connect the ground
wire to GND, the power wire to VOUT, and
the signal wire to A2.

For QT Py M0, connect the ground wire to
GND, the power wire to 5V, and the signal
wire to A2.

©Adafruit Industries Page 170 of 259

https://learn.adafruit.com//assets/51928
https://learn.adafruit.com//assets/51928
https://learn.adafruit.com//assets/51991
https://learn.adafruit.com//assets/51991
https://learn.adafruit.com//assets/97847
https://learn.adafruit.com//assets/97847

For boards like Feather M0 Express,
ItsyBitsy M0 Express and Metro M0
Express, connect the ground wire to any
GND, the power wire to USB or 5V, and
the signal wire to A2.

For the Metro M4 Express, ItsyBitsy M4
Express and the Feather M4 Express,
connect the ground wire to any G or GND,
the power wire to USB or 5V, and the
signal wire to A2.

Standard Servo Code

Here's an example that will sweep a servo connected to pin A2 from 0 degrees to 180
degrees (-90 to 90 degrees) and back.

To use with CircuitPython, you need to first install a few libraries, into the lib folder on
your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file. Extract the contents of the zip file, open the directory
CircuitPython_Essentials/CircuitPython_Servo/ and then click on the directory that
matches the version of CircuitPython you're using and copy the contents of that
directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 171 of 259

https://learn.adafruit.com//assets/51929
https://learn.adafruit.com//assets/51929
https://learn.adafruit.com//assets/104844
https://learn.adafruit.com//assets/104844

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials Servo standard servo example"""
import time
import board
import pwmio
from adafruit_motor import servo

create a PWMOut object on Pin A2.
pwm = pwmio.PWMOut(board.A2, duty_cycle=2 ** 15, frequency=50)

Create a servo object, my_servo.
my_servo = servo.Servo(pwm)

while True:
for angle in range(0, 180, 5): # 0 - 180 degrees, 5 degrees at a time.

my_servo.angle = angle
time.sleep(0.05)

for angle in range(180, 0, -5): # 180 - 0 degrees, 5 degrees at a time.
my_servo.angle = angle
time.sleep(0.05)

Continuous Servo Code

There are two differences with Continuous Servos vs. Standard Servos:

The servo object is created like my_servo = servo.ContinuousServo(pwm)
instead of my_servo = servo.Servo(pwm)
Instead of using myservo.angle , you use my_servo.throttle using a
throttle value from 1.0 (full on) to 0.0 (stopped) to -1.0 (full reverse). Any number
between would be a partial speed forward (positive) or reverse (negative). This
is very similar to standard DC motor control with the adafruit_motor library.

This example runs full forward for 2 seconds, stops for 2 seconds, runs full reverse for
2 seconds, then stops for 4 seconds.

To use with CircuitPython, you need to first install a few libraries, into the lib folder on
your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file

1.

2.

©Adafruit Industries Page 172 of 259

in a zip file. Extract the contents of the zip file, open the directory
CircuitPython_Essentials/CircuitPython_Continuous_Servo/ and then click on the
directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2019 Anne Barela for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials Servo continuous rotation servo example"""
import time
import board
import pwmio
from adafruit_motor import servo

create a PWMOut object on Pin A2.
pwm = pwmio.PWMOut(board.A2, frequency=50)

Create a servo object, my_servo.
my_servo = servo.ContinuousServo(pwm)

while True:
print("forward")
my_servo.throttle = 1.0
time.sleep(2.0)
print("stop")
my_servo.throttle = 0.0
time.sleep(2.0)
print("reverse")
my_servo.throttle = -1.0
time.sleep(2.0)
print("stop")
my_servo.throttle = 0.0
time.sleep(4.0)

Pretty simple!

Note that we assume that 0 degrees is 0.5ms and 180 degrees is a pulse width of
2.5ms. That's a bit wider than the official 1-2ms pulse widths. If you have a servo that
has a different range you can initialize the servo object with a different min_pulse
and max_pulse . For example:

my_servo = servo.Servo(pwm, min_pulse = 500, max_pulse = 2500)

©Adafruit Industries Page 173 of 259

For more detailed information on using servos with CircuitPython, check out the
CircuitPython section of the servo guide (https://adafru.it/Bei)!

CircuitPython Cap Touch
Nearly all CircuitPython boards provide capacitive touch capabilities. This means each
board has at least one pin that works as an input when you touch it! For SAMD21 (M0)
boards, the capacitive touch is done in hardware, so no external resistors, capacitors
or ICs required. On SAMD51 (M4), nRF52840, and some other boards, Adafruit uses a
software solution: you will need to add a 1M (1 megaohm) resistor from the pin to
ground.

On the Circuit Playground Bluefruit (nrf52840) board, the necessary resistors are
already on the board, so you don't need to add them.

This example will show you how to use a capacitive touch pin on your board.

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Essentials/CircuitPython_CapTouch/ and then
click on the directory that matches the version of CircuitPython you're using and copy
the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials Capacitive Touch example"""
import time
import board
import touchio

touch_pad = board.A0 # Will not work for Circuit Playground Express!
touch_pad = board.A1 # For Circuit Playground Express

touch = touchio.TouchIn(touch_pad)

while True:
if touch.value:

©Adafruit Industries Page 174 of 259

file:///home/using-servos-with-circuitpython/circuitpython

print("Touched!")
time.sleep(0.05)

Create the Touch Input

First, we assign the variable touch_pad to a pin. The example uses A0, so we assign
touch_pad = board.A0 . You can choose any touch capable pin from the list below
if you'd like to use a different pin. Then we create the touch object, name it touch
and attach it to touch_pad .

To use with Circuit Playground Express, comment out touch_pad = board.A0 and
uncomment touch_pad = board.A1 .

Main Loop

Next, we create a loop that checks to see if the pin is touched. If it is, it prints to
the serial console. Connect to the serial console to see the printed results when you
touch the pin!

No extra hardware is required, because you can touch the pin directly. However, you
may want to attach alligator clips or copper tape to metallic or conductive objects. Try
metal flatware, fruit or other foods, liquids, aluminum foil, or other items lying around
your desk!

You may need to reload your code or restart your board after changing the attached
item because the capacitive touch code "calibrates" based on what it sees when it

Remember: To "comment out" a line, put a # and a space before it. To
"uncomment" a line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 175 of 259

first starts up. So if you get too many touch responses or not enough, reload your
code through the serial console or eject the board and tap the reset button!

Find the Pin(s)

Your board may have more touch capable pins beyond A0. We've included a list
below that helps you find A0 (or A1 in the case of CPX) for this example, identified by
the magenta arrow. This list also includes information about any other pins that work
for touch on each board!

To use the other pins, simply change the number in A0 to the pin you want to use. For
example, if you want to use A3 instead, your code would start with touch_pad =
board.A3 .

If you would like to use more than one pin at the same time, your code may look like
the following. If needed, you can modify this code to include pins that work for your
board.

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Essentials/CircuitPython_CapTouch_2Pins/
and then click on the directory that matches the version of CircuitPython you're using
and copy the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials Capacitive Touch on two pins example. Does not work on
Trinket M0!"""
import time
import board
import touchio

touch_A1 = touchio.TouchIn(board.A1) # Not a touch pin on Trinket M0!
touch_A2 = touchio.TouchIn(board.A2) # Not a touch pin on Trinket M0!

while True:
if touch_A1.value:

print("Touched A1!")

©Adafruit Industries Page 176 of 259

if touch_A2.value:
print("Touched A2!")

time.sleep(0.05)

Use the list below to find out what pins you can use with your board. Then, try adding
them to your code and have fun!

Trinket M0

There are three touch capable pins on
Trinket: A0, A3, and A4.

Remember, A0 is labeled "1~" on Trinket
M0!

Gemma M0

There are three pins on Gemma, in the
form of alligator-clip-friendly pads, that
work for touch input: A0, A1 and A2.

This example does NOT work for Trinket M0! You must change the pins to use
with this board. This example only works with Gemma, Circuit Playground
Express, Feather M0 Express, Metro M0 Express and ItsyBitsy M0 Express.

©Adafruit Industries Page 177 of 259

https://learn.adafruit.com//assets/51773
https://learn.adafruit.com//assets/51773
https://learn.adafruit.com//assets/51774
https://learn.adafruit.com//assets/51774

QT Py M0

There are six pins on QT Py that work for
touch input: A0 - A3, TX, and RX.

Feather M0 Express

There are 6 pins on the Feather that have
touch capability: A0 - A5.

ItsyBitsy M0 Express

There are 6 pins on the ItsyBitsy that have
touch capability: A0 - A5.

©Adafruit Industries Page 178 of 259

https://learn.adafruit.com//assets/97849
https://learn.adafruit.com//assets/97849
https://learn.adafruit.com//assets/51775
https://learn.adafruit.com//assets/51775
https://learn.adafruit.com//assets/51776
https://learn.adafruit.com//assets/51776

Metro M0 Express

There are 6 pins on the Metro that have
touch capability: A0 - A5.

Circuit Playground Express

Circuit Playground Express has seven
touch capable pins! You have A1 - A7
available, in the form of alligator-clip-
friendly pads. See the CPX guide Cap
Touch section (https://adafru.it/ANC) for
more information on using these pads for
touch!

Remember: A0 does NOT have touch
capabilities on CPX.

CircuitPython Internal RGB LED
Every board has a built in RGB LED. You can use CircuitPython to control the color
and brightness of this LED. There are two different types of internal RGB LEDs:
DotStar (https://adafru.it/kDg) and NeoPixel (https://adafru.it/Bej). This section covers
both and explains which boards have which LED.

©Adafruit Industries Page 179 of 259

https://learn.adafruit.com//assets/51777
https://learn.adafruit.com//assets/51777
https://learn.adafruit.com//assets/51993
https://learn.adafruit.com//assets/51993
file:///home/adafruit-circuit-playground-express/adafruit2-circuitpython-cap-touch
file:///home/adafruit-circuit-playground-express/adafruit2-circuitpython-cap-touch
file:///home/adafruit-dotstar-leds/overview
file:///home/adafruit-neopixel-uberguide/the-magic-of-neopixels

The first example will show you how to change the color and brightness of the
internal RGB LED.

To use with CircuitPython, you need to first install a few libraries, into the lib folder on
your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file. Extract the contents of the zip file, open the directory
CircuitPython_Essentials/CircuitPython_Internal_RGB_LED_colors/ and then click on
the directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials Internal RGB LED red, green, blue example"""
import time
import board

if hasattr(board, "APA102_SCK"):
import adafruit_dotstar

©Adafruit Industries Page 180 of 259

led = adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1)
else:

import neopixel

led = neopixel.NeoPixel(board.NEOPIXEL, 1)

led.brightness = 0.3

while True:
led[0] = (255, 0, 0)
time.sleep(0.5)
led[0] = (0, 255, 0)
time.sleep(0.5)
led[0] = (0, 0, 255)
time.sleep(0.5)

Create the LED

First, we create the LED object and attach it to the correct pin or pins. In the case of a
NeoPixel, there is only one pin necessary, and we have called it NEOPIXEL for easier
use. In the case of a DotStar, however, there are two pins necessary, and so we use
the pin names APA102_MOSI and APA102_SCK to get it set up. Since we're using the
single onboard LED, the last thing we do is tell it that there's only 1 LED!

Trinket M0, Gemma M0, ItsyBitsy M0 Express, and ItsyBitsy M4 Express each have
an onboard Dotstar LED, so no changes are needed to the initial version of the
example.

QT Py M0, Feather M0 Express, Feather M4 Express, Metro M0 Express, Metro M4
Express, and Circuit Playground Express each have an onboard NeoPixel LED, so
you must comment out import adafruit_dotstar and led =

adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1) , and
uncomment import neopixel and led = neopixel.NeoPixel(board.NEOPIXEL,

1) .

Brightness

To set the brightness you simply use the brightness attribute. Brightness is set with
a number between 0 and 1 , representative of a percent from 0% to 100%. So,
led.brightness = (0.3) sets the LED brightness to 30%. The default brightness is
1 or 100%, and at it's maximum, the LED is blindingly bright! You can set it lower if
you choose.

Remember: To "comment out" a line, put a # and a space before it. To
"uncomment" a line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 181 of 259

Main Loop

LED colors are set using a combination of red, green, and blue, in the form of an (R, G,
B) tuple. Each member of the tuple is set to a number between 0 and 255 that
determines the amount of each color present. Red, green and blue in different
combinations can create all the colors in the rainbow! So, for example, to set the LED
to red, the tuple would be (255, 0, 0), which has the maximum level of red, and no
green or blue. Green would be (0, 255, 0), etc. For the colors between, you set a
combination, such as cyan which is (0, 255, 255), with equal amounts of green and
blue.

The main loop is quite simple. It sets the first LED to red using (255, 0, 0) , then
green using (0, 255, 0) , and finally blue using (0, 0, 255) . Next, we give it a
time.sleep() so it stays each color for a period of time. We chose
time.sleep(0.5) , or half a second. Without the time.sleep() it'll flash really
quickly and the colors will be difficult to see!

Note that we set led[0] . This means the first, and in the case of most of the boards,
the only LED. In CircuitPython, counting starts at 0. So the first of any object, list, etc
will be 0 !

Try changing the numbers in the tuples to change your LED to any color of the
rainbow. Or, you can add more lines with different color tuples to add more colors to
the sequence. Always add the time.sleep() , but try changing the amount of time
to create different cycle animations!

©Adafruit Industries Page 182 of 259

Making Rainbows (Because Who Doesn't Love 'Em!)

Coding a rainbow effect involves a little math and a helper function called
colorwheel . For details about how wheel works, see this explanation here (https://
adafru.it/Bek)!

The last example shows how to do a rainbow animation on the internal RGB LED.

To use with CircuitPython, you need to first install a few libraries, into the lib folder on
your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file. Extract the contents of the zip file, open the directory
CircuitPython_Essentials/CircuitPython_Internal_RGB_LED_rainbow/ and then click
on the directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 183 of 259

https://learn.adafruit.com/hacking-ikea-lamps-with-circuit-playground-express/generate-your-colors#colorwheel-or-wheel-explained-2982566-3

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials Internal RGB LED rainbow example"""
import time
import board
from rainbowio import colorwheel

if hasattr(board, "APA102_SCK"):
import adafruit_dotstar

led = adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1)
else:

import neopixel

led = neopixel.NeoPixel(board.NEOPIXEL, 1)

led.brightness = 0.3

i = 0
while True:

i = (i + 1) % 256 # run from 0 to 255
led.fill(colorwheel(i))
time.sleep(0.01)

We add the colorwheel function in after setup but before our main loop.

And right before our main loop, we assign the variable i = 0 , so it's ready for use
inside the loop.

The main loop contains some math that cycles i from 0 to 255 and around again
repeatedly. We use this value to cycle colorwheel() through the rainbow!

The time.sleep() determines the speed at which the rainbow changes. Try a
higher number for a slower rainbow or a lower number for a faster one!

Circuit Playground Express Rainbow

Note that here we use led.fill instead of led[0] . This means it turns on all the
LEDs, which in the current code is only one. So why bother with fill ? Well, you may
have a Circuit Playground Express, which as you can see has TEN NeoPixel LEDs built

©Adafruit Industries Page 184 of 259

in. The examples so far have only turned on the first one. If you'd like to do a rainbow
on all ten LEDs, change the 1 in:

led = neopixel.NeoPixel(board.NEOPIXEL, 1)

to 10 so it reads:

led = neopixel.NeoPixel(board.NEOPIXEL, 10) .

This tells the code to look for 10 LEDs instead of only 1. Now save the code and watch
the rainbow go! You can make the same 1 to 10 change to the previous examples
as well, and use led.fill to light up all the LEDs in the colors you chose! For more
details, check out the NeoPixel section of the CPX guide (https://adafru.it/Bem)!

CircuitPython NeoPixel
NeoPixels are a revolutionary and ultra-popular way to add lights and color to your
project. These stranded RGB lights have the controller inside the LED, so you just
push the RGB data and the LEDs do all the work for you. They're a perfect match for
CircuitPython!

You can drive 300 NeoPixel LEDs with brightness control (set brightness=1.0 in
object creation) and 1000 LEDs without. That's because to adjust the brightness we
have to dynamically recreate the data-stream each write.

©Adafruit Industries Page 185 of 259

file:///home/adafruit-circuit-playground-express/circuitpython-neopixel

Wiring It Up

You'll need to solder up your NeoPixels first. Verify your connection is on the DATA
INPUT or DIN side. Plugging into the DATA OUT or DOUT side is a common mistake!
The connections are labeled and some formats have arrows to indicate the direction
the data must flow.

For powering the pixels from the board, the 3.3V regulator output can handle about
500mA peak which is about 50 pixels with 'average' use. If you want really bright
lights and a lot of pixels, we recommend powering direct from an external power
source.

On Gemma M0 and Circuit Playground Express this is the Vout pad - that pad
has direct power from USB or the battery, depending on which is higher voltage.
On Trinket M0, Feather M0 Express, Feather M4 Express, ItsyBitsy M0 Express
and ItsyBitsy M4 Express the USB or BAT pins will give you direct power from
the USB port or battery.
On Metro M0 Express and Metro M4 Express, use the 5V pin regardless of
whether it's powered via USB or the DC jack.
On QT Py M0, use the 5V pin.

If the power to the NeoPixels is greater than 5.5V you may have some difficulty
driving some strips, in which case you may need to lower the voltage to 4.5-5V or use
a level shifter.

•

•

•

•

Do not use the VIN pin directly on Metro M0 Express or Metro M4 Express! The
voltage can reach 9V and this can destroy your NeoPixels!

Note that the wire ordering on your NeoPixel strip or shape may not exactly
match the diagram above. Check the markings to verify which pin is DIN, 5V and
GND

©Adafruit Industries Page 186 of 259

The Code

This example includes multiple visual effects.

To use with CircuitPython, you need to first install a few libraries, into the lib folder on
your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file. Extract the contents of the zip file, open the directory
CircuitPython_Essentials/CircuitPython_NeoPixel/ and then click on the directory
that matches the version of CircuitPython you're using and copy the contents of that
directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials NeoPixel example"""
import time
import board
from rainbowio import colorwheel
import neopixel

pixel_pin = board.A1
num_pixels = 8

pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.3, auto_write=False)

def color_chase(color, wait):
for i in range(num_pixels):

pixels[i] = color
time.sleep(wait)
pixels.show()

time.sleep(0.5)

def rainbow_cycle(wait):
for j in range(255):

for i in range(num_pixels):
rc_index = (i * 256 // num_pixels) + j

©Adafruit Industries Page 187 of 259

pixels[i] = colorwheel(rc_index & 255)
pixels.show()
time.sleep(wait)

RED = (255, 0, 0)
YELLOW = (255, 150, 0)
GREEN = (0, 255, 0)
CYAN = (0, 255, 255)
BLUE = (0, 0, 255)
PURPLE = (180, 0, 255)

while True:
pixels.fill(RED)
pixels.show()
Increase or decrease to change the speed of the solid color change.
time.sleep(1)
pixels.fill(GREEN)
pixels.show()
time.sleep(1)
pixels.fill(BLUE)
pixels.show()
time.sleep(1)

color_chase(RED, 0.1) # Increase the number to slow down the color chase
color_chase(YELLOW, 0.1)
color_chase(GREEN, 0.1)
color_chase(CYAN, 0.1)
color_chase(BLUE, 0.1)
color_chase(PURPLE, 0.1)

rainbow_cycle(0) # Increase the number to slow down the rainbow

Create the LED

The first thing we'll do is create the LED object. The NeoPixel object has two required
arguments and two optional arguments. You are required to set the pin you're using
to drive your NeoPixels and provide the number of pixels you intend to use. You can
optionally set brightness and auto_write .

NeoPixels can be driven by any pin. We've chosen A1. To set the pin, assign the
variable pixel_pin to the pin you'd like to use, in our case board.A1 .

To provide the number of pixels, assign the variable num_pixels to the number of
pixels you'd like to use. In this example, we're using a strip of 8 .

We've chosen to set brightness=0.3 , or 30%.

By default, auto_write=True , meaning any changes you make to your pixels will be
sent automatically. Since True is the default, if you use that setting, you don't need
to include it in your LED object at all. We've chosen to set auto_write=False . If you
set auto_write=False , you must include pixels.show() each time you'd like to
send data to your pixels. This makes your code more complicated, but it can make
your LED animations faster!

©Adafruit Industries Page 188 of 259

NeoPixel Helpers

Next we've included a few helper functions to create the super fun visual effects
found in this code. First is wheel() which we just learned with the Internal RGB
LED (https://adafru.it/Bel). Then we have color_chase() which requires you to
provide a color and the amount of time in seconds you'd like between each step of
the chase. Next we have rainbow_cycle() , which requires you to provide the
mount of time in seconds you'd like the animation to take. Last, we've included a list
of variables for our colors. This makes it much easier if to reuse the colors anywhere
in the code, as well as add more colors for use in multiple places. Assigning and using
RGB colors is explained in this section of the CircuitPython Internal RGB LED
page (https://adafru.it/Bel).

Main Loop

Thanks to our helpers, our main loop is quite simple. We include the code to set every
NeoPixel we're using to red, green and blue for 1 second each. Then we call
color_chase() , one time for each color on our list with 0.1 second delay
between setting each subsequent LED the same color during the chase. Last we call
rainbow_cycle(0) , which means the animation is as fast as it can be. Increase both
of those numbers to slow down each animation!

Note that the longer your strip of LEDs, the longer it will take for the animations to
complete.

NeoPixel RGBW

NeoPixels are available in RGB, meaning there are three LEDs inside, red, green and
blue. They're also available in RGBW, which includes four LEDs, red, green, blue and
white. The code for RGBW NeoPixels is a little bit different than RGB.

If you run RGB code on RGBW NeoPixels, approximately 3/4 of the LEDs will light up
and the LEDs will be the incorrect color even though they may appear to be changing.
This is because NeoPixels require a piece of information for each available color (red,
green, blue and possibly white).

We have a ton more information on general purpose NeoPixel know-how at our
NeoPixel UberGuide https://learn.adafruit.com/adafruit-neopixel-uberguide

©Adafruit Industries Page 189 of 259

file:///home/circuitpython-essentials/circuitpython-internal-rgb-led
file:///home/circuitpython-essentials/circuitpython-internal-rgb-led
file:///home/circuitpython-essentials/circuitpython-internal-rgb-led#main-loop
file:///home/circuitpython-essentials/circuitpython-internal-rgb-led#main-loop
https://learn.adafruit.com/adafruit-neopixel-uberguide

Therefore, RGB LEDs require three pieces of information and RGBW LEDs require
FOUR pieces of information to work. So when you create the LED object for RGBW
LEDs, you'll include pixel_order=(1, 0, 2, 3) , which sets the pixel order and
indicates four pieces of information involved.

Then, you must include an extra number in every color tuple you create. For example,
red will be (255, 0, 0, 0) . This is how you send the fourth piece of information.
Check out the example below to see how our NeoPixel code looks for using with
RGBW LEDs!

The Code

To use with CircuitPython, you need to first install a few libraries, into the lib folder on
your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file. Extract the contents of the zip file, open the directory
CircuitPython_Essentials/CircuitPython_NeoPixel_RGBW/ and then click on the
directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials NeoPixel RGBW example"""
import time
import board
import neopixel

pixel_pin = board.A1
num_pixels = 8

pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.3, auto_write=False,
pixel_order=(1, 0, 2, 3))

©Adafruit Industries Page 190 of 259

def colorwheel(pos):
Input a value 0 to 255 to get a color value.
The colours are a transition r - g - b - back to r.
if pos < 0 or pos > 255:

return (0, 0, 0, 0)
if pos < 85:

return (255 - pos * 3, pos * 3, 0, 0)
if pos < 170:

pos -= 85
return (0, 255 - pos * 3, pos * 3, 0)

pos -= 170
return (pos * 3, 0, 255 - pos * 3, 0)

def color_chase(color, wait):
for i in range(num_pixels):

pixels[i] = color
time.sleep(wait)
pixels.show()

time.sleep(0.5)

def rainbow_cycle(wait):
for j in range(255):

for i in range(num_pixels):
rc_index = (i * 256 // num_pixels) + j
pixels[i] = colorwheel(rc_index & 255)

pixels.show()
time.sleep(wait)

RED = (255, 0, 0, 0)
YELLOW = (255, 150, 0, 0)
GREEN = (0, 255, 0, 0)
CYAN = (0, 255, 255, 0)
BLUE = (0, 0, 255, 0)
PURPLE = (180, 0, 255, 0)

while True:
pixels.fill(RED)
pixels.show()
Increase or decrease to change the speed of the solid color change.
time.sleep(1)
pixels.fill(GREEN)
pixels.show()
time.sleep(1)
pixels.fill(BLUE)
pixels.show()
time.sleep(1)

color_chase(RED, 0.1) # Increase the number to slow down the color chase
color_chase(YELLOW, 0.1)
color_chase(GREEN, 0.1)
color_chase(CYAN, 0.1)
color_chase(BLUE, 0.1)
color_chase(PURPLE, 0.1)

rainbow_cycle(0) # Increase the number to slow down the rainbow

Read the Docs

For a more in depth look at what neopixel can do, check out NeoPixel on Read the
Docs (https://adafru.it/C5m).

©Adafruit Industries Page 191 of 259

https://circuitpython.readthedocs.io/projects/neopixel/en/latest/
https://circuitpython.readthedocs.io/projects/neopixel/en/latest/

CircuitPython DotStar
DotStars use two wires, unlike NeoPixel's one wire. They're very similar but you can
write to DotStars much faster with hardware SPI and they have a faster PWM cycle so
they are better for light painting.

Any pins can be used but if the two pins can form a hardware SPI port, the library will
automatically switch over to hardware SPI. If you use hardware SPI then you'll get 4
MHz clock rate (that would mean updating a 64 pixel strand in about 500uS - that's
0.0005 seconds). If you use non-hardware SPI pins you'll drop down to about 3KHz,
1000 times as slow!

You can drive 300 DotStar LEDs with brightness control (set brightness=1.0 in
object creation) and 1000 LEDs without. That's because to adjust the brightness we
have to dynamically recreate the data-stream each write.

You'll need the adafruit_dotstar.mpy library if you don't already have it in your /lib
folder! You can get it from the CircuitPython Library Bundle (https://adafru.it/ENC). If
you need help installing the library, check out the CircuitPython Libraries
page (https://adafru.it/ABU).

Wire It Up

You'll need to solder up your DotStars first. Verify your connection is on the DATA
INPUT or DI and CLOCK INPUT or CI side. Plugging into the DATA OUT/DO or CLOCK
OUT/CO side is a common mistake! The connections are labeled and some formats
have arrows to indicate the direction the data must flow. Always verify your wiring
with a visual inspection, as the order of the connections can differ from strip to strip!

For powering the pixels from the board, the 3.3V regulator output can handle about
500mA peak which is about 50 pixels with 'average' use. If you want really bright

©Adafruit Industries Page 192 of 259

https://circuitpython.org/libraries
file:///home/welcome-to-circuitpython/circuitpython-libraries
file:///home/welcome-to-circuitpython/circuitpython-libraries

lights and a lot of pixels, we recommend powering direct from an external power
source.

On Gemma M0 and Circuit Playground Express this is the Vout pad - that pad
has direct power from USB or the battery, depending on which is higher voltage.
On Trinket M0, Feather M0 Express, Feather M4 Express, ItsyBitsy M0 Express
and ItsyBitsy M4 Express the USB or BAT pins will give you direct power from
the USB port or battery.
On Metro M0 Express and Metro M4 Express, use the 5V pin regardless of
whether it's powered via USB or the DC jack.
On QT Py M0, use the 5V pin.

If the power to the DotStars is greater than 5.5V you may have some difficulty driving
some strips, in which case you may need to lower the voltage to 4.5-5V or use a level
shifter.

The Code

This example includes multiple visual effects.

To use with CircuitPython, you need to first install a few libraries, into the lib folder on
your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file

•

•

•

•

Do not use the VIN pin directly on Metro M0 Express or Metro M4 Express! The
voltage can reach 9V and this can destroy your DotStars!

Note that the wire ordering on your DotStar strip or shape may not exactly match
the diagram above. Check the markings to verify which pin is DIN, CIN, 5V and
GND

©Adafruit Industries Page 193 of 259

in a zip file. Extract the contents of the zip file, open the directory
CircuitPython_Essentials/CircuitPython_DotStar/ and then click on the directory that
matches the version of CircuitPython you're using and copy the contents of that
directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials DotStar example"""
import time
from rainbowio import colorwheel
import adafruit_dotstar
import board

num_pixels = 30
pixels = adafruit_dotstar.DotStar(board.A1, board.A2, num_pixels, brightness=0.1,
auto_write=False)

def color_fill(color, wait):
pixels.fill(color)
pixels.show()
time.sleep(wait)

def slice_alternating(wait):
pixels[::2] = [RED] * (num_pixels // 2)
pixels.show()
time.sleep(wait)
pixels[1::2] = [ORANGE] * (num_pixels // 2)
pixels.show()
time.sleep(wait)
pixels[::2] = [YELLOW] * (num_pixels // 2)
pixels.show()
time.sleep(wait)
pixels[1::2] = [GREEN] * (num_pixels // 2)
pixels.show()
time.sleep(wait)
pixels[::2] = [TEAL] * (num_pixels // 2)
pixels.show()
time.sleep(wait)
pixels[1::2] = [CYAN] * (num_pixels // 2)
pixels.show()
time.sleep(wait)
pixels[::2] = [BLUE] * (num_pixels // 2)
pixels.show()
time.sleep(wait)
pixels[1::2] = [PURPLE] * (num_pixels // 2)

©Adafruit Industries Page 194 of 259

pixels.show()
time.sleep(wait)
pixels[::2] = [MAGENTA] * (num_pixels // 2)
pixels.show()
time.sleep(wait)
pixels[1::2] = [WHITE] * (num_pixels // 2)
pixels.show()
time.sleep(wait)

def slice_rainbow(wait):
pixels[::6] = [RED] * (num_pixels // 6)
pixels.show()
time.sleep(wait)
pixels[1::6] = [ORANGE] * (num_pixels // 6)
pixels.show()
time.sleep(wait)
pixels[2::6] = [YELLOW] * (num_pixels // 6)
pixels.show()
time.sleep(wait)
pixels[3::6] = [GREEN] * (num_pixels // 6)
pixels.show()
time.sleep(wait)
pixels[4::6] = [BLUE] * (num_pixels // 6)
pixels.show()
time.sleep(wait)
pixels[5::6] = [PURPLE] * (num_pixels // 6)
pixels.show()
time.sleep(wait)

def rainbow_cycle(wait):
for j in range(255):

for i in range(num_pixels):
rc_index = (i * 256 // num_pixels) + j
pixels[i] = colorwheel(rc_index & 255)

pixels.show()
time.sleep(wait)

RED = (255, 0, 0)
YELLOW = (255, 150, 0)
ORANGE = (255, 40, 0)
GREEN = (0, 255, 0)
TEAL = (0, 255, 120)
CYAN = (0, 255, 255)
BLUE = (0, 0, 255)
PURPLE = (180, 0, 255)
MAGENTA = (255, 0, 20)
WHITE = (255, 255, 255)

while True:
Change this number to change how long it stays on each solid color.
color_fill(RED, 0.5)
color_fill(YELLOW, 0.5)
color_fill(ORANGE, 0.5)
color_fill(GREEN, 0.5)
color_fill(TEAL, 0.5)
color_fill(CYAN, 0.5)
color_fill(BLUE, 0.5)
color_fill(PURPLE, 0.5)
color_fill(MAGENTA, 0.5)
color_fill(WHITE, 0.5)

Increase or decrease this to speed up or slow down the animation.
slice_alternating(0.1)

color_fill(WHITE, 0.5)

©Adafruit Industries Page 195 of 259

Increase or decrease this to speed up or slow down the animation.
slice_rainbow(0.1)

time.sleep(0.5)

Increase this number to slow down the rainbow animation.
rainbow_cycle(0)

Create the LED

The first thing we'll do is create the LED object. The DotStar object has three required
arguments and two optional arguments. You are required to set the pin you're using
for data, set the pin you'll be using for clock, and provide the number of pixels you
intend to use. You can optionally set brightness and auto_write .

DotStars can be driven by any two pins. We've chosen A1 for clock and A2 for data.
To set the pins, include the pin names at the beginning of the object creation, in this
case board.A1 and board.A2 .

To provide the number of pixels, assign the variable num_pixels to the number of
pixels you'd like to use. In this example, we're using a strip of 72 .

We've chosen to set brightness=0.1 , or 10%.

By default, auto_write=True , meaning any changes you make to your pixels will be
sent automatically. Since True is the default, if you use that setting, you don't need
to include it in your LED object at all. We've chosen to set auto_write=False . If you
set auto_write=False , you must include pixels.show() each time you'd like to
send data to your pixels. This makes your code more complicated, but it can make
your LED animations faster!

DotStar Helpers

We've included a few helper functions to create the super fun visual effects found in
this code.

First is wheel() which we just learned with the Internal RGB LED (https://adafru.it/
Bel). Then we have color_fill() which requires you to provide a color and the
length of time you'd like it to be displayed. Next, are slice_alternating() ,

We've chosen pins A1 and A2, but these are not SPI pins on all boards. DotStars
respond faster when using hardware SPI!

©Adafruit Industries Page 196 of 259

file:///home/circuitpython-essentials/circuitpython-internal-rgb-led

slice_rainbow() , and rainbow_cycle() which require you to provide the amount
of time in seconds you'd between each step of the animation.

Last, we've included a list of variables for our colors. This makes it much easier if to
reuse the colors anywhere in the code, as well as add more colors for use in multiple
places. Assigning and using RGB colors is explained in this section of the
CircuitPython Internal RGB LED page (https://adafru.it/Bel).

The two slice helpers utilise a nifty feature of the DotStar library that allows us to use
math to light up LEDs in repeating patterns. slice_alternating() first lights up the
even number LEDs and then the odd number LEDs and repeats this back and forth.
slice_rainbow() lights up every sixth LED with one of the six rainbow colors until
the strip is filled. Both use our handy color variables. This slice code only works when
the total number of LEDs is divisible by the slice size, in our case 2 and 6. DotStars
come in strips of 30, 60, 72, and 144, all of which are divisible by 2 and 6. In the event
that you cut them into different sized strips, the code in this example may not work
without modification. However, as long as you provide a total number of LEDs that is
divisible by the slices, the code will work.

Main Loop

Our main loop begins by calling color_fill() once for each color on our list and
sets each to hold for 0.5 seconds. You can change this number to change how fast
each color is displayed. Next, we call slice_alternating(0.1) , which means
there's a 0.1 second delay between each change in the animation. Then, we fill the
strip white to create a clean backdrop for the rainbow to display. Then, we call
slice_rainbow(0.1) , for a 0.1 second delay in the animation. Last we call
rainbow_cycle(0) , which means it's as fast as it can possibly be. Increase or
decrease either of these numbers to speed up or slow down the animations!

Note that the longer your strip of LEDs is, the longer it will take for the animations to
complete.

Is it SPI?

We explained at the beginning of this section that the LEDs respond faster if you're
using hardware SPI. On some of the boards, there are HW SPI pins directly available

We have a ton more information on general purpose DotStar know-how at our
DotStar UberGuide https://learn.adafruit.com/adafruit-dotstar-leds

©Adafruit Industries Page 197 of 259

file:///home/circuitpython-essentials/circuitpython-internal-rgb-led#main-loop
file:///home/circuitpython-essentials/circuitpython-internal-rgb-led#main-loop
https://learn.adafruit.com/adafruit-dotstar-leds

in the form of MOSI and SCK. However, hardware SPI is available on more than just
those pins. But, how can you figure out which? Easy! We wrote a handy script.

We chose pins A1 and A2 for our example code. To see if these are hardware SPI on
the board you're using, copy and paste the code into code.py using your favorite
editor, and save the file. Then connect to the serial console to see the results.

To check if other pin combinations have hardware SPI, change the pin names on the
line reading: if is_hardware_SPI(board.A1, board.A2): to the pins you want to
use. Then, check the results in the serial console. Super simple!

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Essentials/SPI_Test_Script/ and then click on
the directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials Hardware SPI pin verification script"""
import board
import busio

def is_hardware_spi(clock_pin, data_pin):
try:

p = busio.SPI(clock_pin, data_pin)
p.deinit()
return True

except ValueError:
return False

Provide the two pins you intend to use.
if is_hardware_spi(board.A1, board.A2):

print("This pin combination is hardware SPI!")
else:

print("This pin combination isn't hardware SPI.")

©Adafruit Industries Page 198 of 259

Read the Docs

For a more in depth look at what dotstar can do, check out DotStar on Read the
Docs (https://adafru.it/C4d).

CircuitPython UART Serial
In addition to the USB-serial connection you use for the REPL, there is also a
hardware UART you can use. This is handy to talk to UART devices like GPSs, some
sensors, or other microcontrollers!

This quick-start example shows how you can create a UART device for communicating
with hardware serial devices.

To use this example, you'll need something to generate the UART data. We've used a
GPS! Note that the GPS will give you UART data without getting a fix on your location.
You can use this example right from your desk! You'll have data to read, it simply won't
include your actual location.

LED + to QT Py SCK
LED - to 470Ω resistor
470Ω resistor to QT Py GND

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Essentials/CircuitPython_UART/ and then click
on the directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

The QT Py M0 does not have a little red LED. Therefore, you must connect an
external LED and edit this example for it to work. Follow the wiring diagram and
steps below to run this example on QT Py M0.

©Adafruit Industries Page 199 of 259

https://circuitpython.readthedocs.io/projects/dotstar/en/latest/
https://circuitpython.readthedocs.io/projects/dotstar/en/latest/
https://learn.adafruit.com//assets/102008
https://learn.adafruit.com//assets/102008

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials UART Serial example"""
import board
import busio
import digitalio

For most CircuitPython boards:
led = digitalio.DigitalInOut(board.LED)
For QT Py M0:
led = digitalio.DigitalInOut(board.SCK)
led.direction = digitalio.Direction.OUTPUT

uart = busio.UART(board.TX, board.RX, baudrate=9600)

while True:
data = uart.read(32) # read up to 32 bytes
print(data) # this is a bytearray type

if data is not None:
led.value = True

convert bytearray to string
data_string = ''.join([chr(b) for b in data])
print(data_string, end="")

led.value = False

For QT Py M0, you'll need to comment out led = DigitalInOut(board.LED) and
uncomment led = DigitalInOut(board.SCK) . The UART code remains the same.

The Code

First we create the UART object. We provide the pins we'd like to use, board.TX and
board.RX , and we set the baudrate=9600 . While these pins are labeled on most of
the boards, be aware that RX and TX are not labeled on Gemma, and are labeled on
the bottom of Trinket. See the diagrams below for help with finding the correct pins
on your board.

Note: To "comment out" a line, put a # and a space before it. To "uncomment" a
line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 200 of 259

Once the object is created you read data in with read(numbytes) where you can
specify the max number of bytes. It will return a byte array type object if anything was
received already. Note it will always return immediately because there is an internal
buffer! So read as much data as you can 'digest'.

If there is no data available, read() will return None , so check for that before
continuing.

The data that is returned is in a byte array, if you want to convert it to a string, you can
use this handy line of code which will run chr() on each byte:

datastr = ''.join([chr(b) for b in data]) # convert bytearray to

string

Your results will look something like this:

Wire It Up

You'll need a couple of things to connect the GPS to your board.

For more information about the data you're reading and the Ultimate GPS, check
out the Ultimate GPS guide: https://learn.adafruit.com/adafruit-ultimate-gps

©Adafruit Industries Page 201 of 259

https://learn.adafruit.com/adafruit-ultimate-gps

For Gemma M0 and Circuit Playground Express, you can use use alligator clips to
connect to the Flora Ultimate GPS Module.

For Trinket M0, Feather M0 Express, Metro M0 Express and ItsyBitsy M0 Express,
you'll need a breadboard and jumper wires to connect to the Ultimate GPS Breakout.

We've included diagrams show you how to connect the GPS to your board. In these
diagrams, the wire colors match the same pins on each board.

The black wire connects between the ground pins.
The red wire connects between the power pins on the GPS and your board.
The blue wire connects from TX on the GPS to RX on your board.
The white wire connects from RX on the GPS to TX on your board.

Check out the list below for a diagram of your specific board!

Circuit Playground Express and Circuit
Playground Bluefruit

Connect 3.3v on your CPX to 3.3v on your
GPS.
Connect GND on your CPX to GND on
your GPS.
Connect RX/A6 on your CPX to TX on your
GPS.
Connect TX/A7 on your CPX to RX on your
GPS.

•
•
•
•

Watch out! A common mixup with UART serial is that RX on one board connects
to TX on the other! However, sometimes boards have RX labeled TX and vice
versa. So, you'll want to start with RX connected to TX, but if that doesn't work,
try the other way around!

©Adafruit Industries Page 202 of 259

https://learn.adafruit.com//assets/52309
https://learn.adafruit.com//assets/52309

Trinket M0

Connect USB on the Trinket to VIN on the
GPS.
Connect Gnd on the Trinket to GND on the
GPS.
Connect D3 on the Trinket to TX on the
GPS.
Connect D4 on the Trinket to RX on the
GPS.

Gemma M0

Connect 3vo on the Gemma to 3.3v on the
GPS.
Connect GND on the Gemma to GND on
the GPS.
Connect A1/D2 on the Gemma to TX on
the GPS.
Connect A2/D0 on the Gemma to RX on
the GPS.

QT Py M0

Connect 3V on the QT Py to VIN on the
GPS.
Connect GND on the QT Py to GND on the
GPS.
Connect RX on the QT Py to TX on the
GPS.
Connect TX on the QT Py to RX on the
GPS.

©Adafruit Industries Page 203 of 259

https://learn.adafruit.com//assets/52310
https://learn.adafruit.com//assets/52310
https://learn.adafruit.com//assets/52311
https://learn.adafruit.com//assets/52311
https://learn.adafruit.com//assets/97860
https://learn.adafruit.com//assets/97860

Feather M0 Express and Feather M4
Express

Connect USB on the Feather to VIN on the
GPS.
Connect GND on the Feather to GND on
the GPS.
Connect RX on the Feather to TX on the
GPS.
Connect TX on the Feather to RX on the
GPS.

ItsyBitsy M0 Express and ItsyBitsy M4
Express

Connect USB on the ItsyBitsy to VIN on
the GPS
Connect G on the ItsyBitsy to GND on the
GPS.
Connect RX/0 on the ItsyBitsy to TX on the
GPS.
Connect TX/1 on the ItsyBitsy to RX on the
GPS.

Metro M0 Express and Metro M4 Express

Connect 5V on the Metro to VIN on the
GPS.
Connect GND on the Metro to GND on the
GPS.
Connect RX/D0 on the Metro to TX on the
GPS.
Connect TX/D1 on the Metro to RX on the
GPS.

Where's my UART?

On the SAMD21, we have the flexibility of using a wide range of pins for UART.
Compare this to some chips like the ESP8266 with fixed UART pins. The good news is
you can use many but not all pins. Given the large number of SAMD boards we have,
its impossible to guarantee anything other than the labeled 'TX' and 'RX'. So, if you

©Adafruit Industries Page 204 of 259

https://learn.adafruit.com//assets/52312
https://learn.adafruit.com//assets/52312
https://learn.adafruit.com//assets/52324
https://learn.adafruit.com//assets/52324
https://learn.adafruit.com//assets/52328
https://learn.adafruit.com//assets/52328

want some other setup, or multiple UARTs, how will you find those pins? Easy! We've
written a handy script.

These are the results from a Trinket M0, your output may vary and it might be very
long. For more details about UARTs and SERCOMs check out our detailed guide
here (https://adafru.it/Ben)

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Essentials/UART_Test_Script/ and then click
on the directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials UART possible pin-pair identifying script"""
import board
import busio
from microcontroller import Pin

def is_hardware_uart(tx, rx):
try:

p = busio.UART(tx, rx)
p.deinit()
return True

except ValueError:
return False

def get_unique_pins():
exclude = ['NEOPIXEL', 'APA102_MOSI', 'APA102_SCK']

©Adafruit Industries Page 205 of 259

file:///home/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports
file:///home/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports

pins = [pin for pin in [
getattr(board, p) for p in dir(board) if p not in exclude]

if isinstance(pin, Pin)]
unique = []
for p in pins:

if p not in unique:
unique.append(p)

return unique

for tx_pin in get_unique_pins():
for rx_pin in get_unique_pins():

if rx_pin is tx_pin:
continue

if is_hardware_uart(tx_pin, rx_pin):
print("RX pin:", rx_pin, "\t TX pin:", tx_pin)

Trinket M0: Create UART before I2C

On the Trinket M0 (only), if you are using both UART and I2C, you must create the
UART object first, e.g.:

>>> import board
>>> uart = board.UART() # Uses pins 4 and 3 for TX and RX, baudrate 9600.
>>> i2c = board.I2C() # Uses pins 2 and 0 for SCL and SDA.

or alternatively,

Creating the I2C object first does not work:

>>> import board
>>> i2c = board.I2C() # Uses pins 2 and 0 for SCL and SDA.
>>> uart = board.UART() # Uses pins 4 and 3 for TX and RX, baudrate 9600.
Traceback (most recent call last):
File "", line 1, in
ValueError: Invalid pins

CircuitPython I2C
I2C is a 2-wire protocol for communicating with simple sensors and devices, meaning
it uses two connections for transmitting and receiving data. There are many I2C
devices available and they're really easy to use with CircuitPython. We have libraries
available for many I2C devices in the library bundle (https://adafru.it/ENC). (If you
don't see the sensor you're looking for, keep checking back, more are being written
all the time!)

In this section, we're going to do is learn how to scan the I2C bus for all connected
devices. Then we're going to learn how to interact with an I2C device.

©Adafruit Industries Page 206 of 259

https://circuitpython.org/libraries

We'll be using the Adafruit TSL2591 (http://adafru.it/1980), a common, low-cost light
sensor. While the exact code we're running is specific to the TSL2591 the overall
process is the same for just about any I2C sensor or device.

These examples will use the TSL2591 lux sensor breakout. The first thing you'll want
to do is get the sensor connected so your board has I2C to talk to.

Wire It Up

You'll need a couple of things to connect the TSL2591 to your board. The TSL2591
comes with STEMMA QT / QWIIC connectors on it, which makes it super simple to
wire it up. No further soldering required!

For Gemma M0, Circuit Playground Express and Circuit Playground Bluefruit, you can
use use the STEMMA QT to alligator clips cable (http://adafru.it/4398) to connect to
the TSL2591.

For Trinket M0, Feather M0 and M4 Express, Metro M0 and M4 Express and ItsyBitsy
M0 and M4 Express, you'll need a breadboard and STEMMA QT to male jumper wires
cable (http://adafru.it/4209) to connect to the TSL2591.

For QT Py M0, you'll need a STEMMA QT cable (http://adafru.it/4210) to connect to the
TSL2591.

We've included diagrams show you how to connect the TSL2591 to your board. In
these diagrams, the wire colors match the STEMMA QT cables and connect to the
same pins on each board.

The black wire connects from GND on the TSL2591 to ground on your board.
The red wire connects from VIN on the TSL2591 to power on your board.
The yellow wire connects from SCL on the TSL2591 to SCL on your board.
The blue wire connects from SDA on the TSL2591 to SDA on your board.

Check out the list below for a diagram of your specific board!

•
•
•
•

Be aware that the Adafruit microcontroller boards do not have I2C pullup
resistors built in! All of the Adafruit breakouts do, but if you're building your own
board or using a non-Adafruit breakout, you must add 2.2K-10K ohm pullups on
both SDA and SCL to the 3.3V.

©Adafruit Industries Page 207 of 259

https://www.adafruit.com/product/1980
https://www.adafruit.com/product/4398
https://www.adafruit.com/product/4209
https://www.adafruit.com/product/4209
https://www.adafruit.com/product/4210

Circuit Playground Express and Circuit
Playground Bluefruit

Connect 3.3v on your CPX to 3.3v on your
TSL2591.
Connect GND on your CPX to GND on
your TSL2591.
Connect SCL/A4 on your CPX to SCL on
your TSL2591.
Connect SDL/A5 on your CPX to SDA on
your TSL2591.

Trinket M0

Connect USB on the Trinket to VIN on the
TSL2591.
Connect Gnd on the Trinket to GND on the
TSL2591.
Connect D2 on the Trinket to SCL on the
TSL2591.
Connect D0 on the Trinket to SDA on the
TSL2591.

Gemma M0

Connect 3vo on the Gemma to 3V on the
TSL2591.
Connect GND on the Gemma to GND on
the TSL2591.
Connect A1/D2 on the Gemma to SCL on
the TSL2591.
Connect A2/D0 on the Gemma to SDA on
the TSL2591.

©Adafruit Industries Page 208 of 259

https://learn.adafruit.com//assets/97884
https://learn.adafruit.com//assets/97884
https://learn.adafruit.com//assets/97885
https://learn.adafruit.com//assets/97885
https://learn.adafruit.com//assets/97886
https://learn.adafruit.com//assets/97886

QT Py M0

If using the STEMMA QT cable:

Connect the STEMMA QT cable from the
connector on the QT Py to the connector
on the TSL2591.
Alternatively, if using a breadboard:

Connect 3V on the QT Py to VIN on the
TSL2591.
Connect GND on the QT Py to GND on the
TSL2591.
Connect SCL on the QT Py to SCL on the
TSL2591.
Connect SDA on the QT Py to SDA on the
TSL2591.

Feather M0 Express and Feather M4
Express

Connect USB on the Feather to VIN on the
TSL2591.
Connect GND on the Feather to GND on
the TSL2591.
Connect SCL on the Feather to SCL on the
TSL2591.
Connect SDA on the Feather to SDA on
the TSL2591.

©Adafruit Industries Page 209 of 259

https://learn.adafruit.com//assets/97890
https://learn.adafruit.com//assets/97890
https://learn.adafruit.com//assets/97887
https://learn.adafruit.com//assets/97887

ItsyBitsy M0 Express and ItsyBitsy M4
Express

Connect USB on the ItsyBitsy to VIN on
the TSL2591
Connect G on the ItsyBitsy to GND on the
TSL2591.
Connect SCL on the ItsyBitsy to SCL on
the TSL2591.
Connect SDA on the ItsyBitsy to SDA on
the TSL2591.

Metro M0 Express and Metro M4 Express

Connect 5V on the Metro to VIN on the
TSL2591.
Connect GND on the Metro to GND on the
TSL2591.
Connect SCL on the Metro to SCL on the
TSL2591.
Connect SDA on the Metro to SDA on the
TSL2591.

Find Your Sensor

The first thing you'll want to do after getting the sensor wired up, is make sure it's
wired correctly. We're going to do an I2C scan to see if the board is detected, and if it
is, print out its I2C address.

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Essentials/CircuitPython_I2C_Scan/ and then
click on the directory that matches the version of CircuitPython you're using and copy
the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 210 of 259

https://learn.adafruit.com//assets/97888
https://learn.adafruit.com//assets/97888
https://learn.adafruit.com//assets/97889
https://learn.adafruit.com//assets/97889

SPDX-FileCopyrightText: 2017 Limor Fried for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython I2C Device Address Scan"""
If you run this and it seems to hang, try manually unlocking
your I2C bus from the REPL with
>>> import board
>>> board.I2C().unlock()

import time
import board

To use default I2C bus (most boards)
i2c = board.I2C() # uses board.SCL and board.SDA
i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a
microcontroller

To create I2C bus on specific pins
import busio
i2c = busio.I2C(board.SCL1, board.SDA1) # QT Py RP2040 STEMMA connector
i2c = busio.I2C(board.GP1, board.GP0) # Pi Pico RP2040

while not i2c.try_lock():
pass

try:
while True:

print(
"I2C addresses found:",
[hex(device_address) for device_address in i2c.scan()],

)
time.sleep(2)

finally: # unlock the i2c bus when ctrl-c'ing out of the loop
i2c.unlock()

First we create the i2c object, using board.I2C() . This convenience routine
creates and saves a busio.I2C object using the default pins board.SCL and
board.SDA . If the object has already been created, then the existing object is
returned. No matter how many times you call board.I2C() , it will return the same
object. This is called a singleton.

To be able to scan it, we need to lock the I2C down so the only thing accessing it is
the code. So next we include a loop that waits until I2C is locked and then continues
on to the scan function.

Last, we have the loop that runs the actual scan, i2c_scan() . Because I2C typically
refers to addresses in hex form, we've included this bit of code that formats the

©Adafruit Industries Page 211 of 259

results into hex format: [hex(device_address) for device_address in
i2c.scan()] .

Open the serial console to see the results! The code prints out an array of addresses.
We've connected the TSL2591 which has a 7-bit I2C address of 0x29. The result for
this sensor is I2C addresses found: ['0x29'] . If no addresses are returned, refer
back to the wiring diagrams to make sure you've wired up your sensor correctly.

I2C Sensor Data

Now we know for certain that our sensor is connected and ready to go. Let's find out
how to get the data from our sensor!

Installing Project Code

To use with CircuitPython, you need to first install a few libraries, into the lib folder on
your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file. Extract the contents of the zip file, open the directory
CircuitPython_Essentials/CircuitPython_I2C_TSL2591/ and then click on the
directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2017 Limor Fried for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials I2C sensor example using TSL2591"""
import time
import board
import adafruit_tsl2591

i2c = board.I2C() # uses board.SCL and board.SDA

©Adafruit Industries Page 212 of 259

i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a
microcontroller

Lock the I2C device before we try to scan
while not i2c.try_lock():

pass
Print the addresses found once
print("I2C addresses found:", [hex(device_address) for device_address in
i2c.scan()])

Unlock I2C now that we're done scanning.
i2c.unlock()

Create library object on our I2C port
tsl2591 = adafruit_tsl2591.TSL2591(i2c)

Use the object to print the sensor readings
while True:

print("Lux:", tsl2591.lux)
time.sleep(0.5)

This code begins the same way as the scan code. We've included the scan code so
you have verification that your sensor is wired up correctly and is detected. It prints
the address once. After the scan, we unlock I2C with i2c_unlock() so we can use
the sensor for data.

We create our sensor object using the sensor library. We call it tsl2591 and provide
it the i2c object.

Then we have a simple loop that prints out the lux reading using the sensor object we
created. We add a time.sleep(1.0) , so it only prints once per second. Connect to
the serial console to see the results. Try shining a light on it to see the results change!

©Adafruit Industries Page 213 of 259

Where's my I2C?

On the SAMD21, SAMD51 and nRF52840, we have the flexibility of using a wide range
of pins for I2C. On the nRF52840, any pin can be used for I2C! Some chips, like the
ESP8266, require using bitbangio, but can also use any pins for I2C. There's some
other chips that may have fixed I2C pin.

The good news is you can use many but not all pins. Given the large number of SAMD
boards we have, its impossible to guarantee anything other than the labeled 'SDA'
and 'SCL'. So, if you want some other setup, or multiple I2C interfaces, how will you
find those pins? Easy! We've written a handy script.

These are the results from an ItsyBitsy M0 Express. Your output may vary and it might
be very long. For more details about I2C and SERCOMs, check out our detailed guide
here (https://adafru.it/Ben).

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Essentials/I2C_Test_Script/ and then click on
the directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 214 of 259

file:///home/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports
file:///home/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials I2C possible pin-pair identifying script"""
import board
import busio
from microcontroller import Pin

def is_hardware_I2C(scl, sda):
try:

p = busio.I2C(scl, sda)
p.deinit()
return True

except ValueError:
return False

except RuntimeError:
return True

def get_unique_pins():
exclude = ['NEOPIXEL', 'APA102_MOSI', 'APA102_SCK']
pins = [pin for pin in [

getattr(board, p) for p in dir(board) if p not in exclude]
if isinstance(pin, Pin)]

unique = []
for p in pins:

if p not in unique:
unique.append(p)

return unique

for scl_pin in get_unique_pins():
for sda_pin in get_unique_pins():

if scl_pin is sda_pin:
continue

if is_hardware_I2C(scl_pin, sda_pin):
print("SCL pin:", scl_pin, "\t SDA pin:", sda_pin)

CircuitPython HID Keyboard and Mouse
One of the things we baked into CircuitPython is 'HID' (Human Interface Device)
control - that means keyboard and mouse capabilities. This means your CircuitPython
board can act like a keyboard device and press key commands, or a mouse and have
it move the mouse pointer around and press buttons. This is really handy because
even if you cannot adapt your software to work with hardware, there's almost always
a keyboard interface - so if you want to have a capacitive touch interface for a game,
say, then keyboard emulation can often get you going really fast!

This section walks you through the code to create a keyboard or mouse emulator.
First we'll go through an example that uses pins on your board to emulate keyboard
input. Then, we will show you how to wire up a joystick to act as a mouse, and cover
the code needed to make that happen.

©Adafruit Industries Page 215 of 259

CircuitPython Keyboard Emulator

To use with CircuitPython, you need to first install a few libraries, into the lib folder on
your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file. Extract the contents of the zip file, open the directory
CircuitPython_Essentials/CircuitPython_HID_Keyboard/ and then click on the
directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials HID Keyboard example"""
import time

import board
import digitalio
import usb_hid
from adafruit_hid.keyboard import Keyboard
from adafruit_hid.keyboard_layout_us import KeyboardLayoutUS
from adafruit_hid.keycode import Keycode

A simple neat keyboard demo in CircuitPython

The pins we'll use, each will have an internal pullup
keypress_pins = [board.A1, board.A2]
Our array of key objects
key_pin_array = []
The Keycode sent for each button, will be paired with a control key
keys_pressed = [Keycode.A, "Hello World!\n"]
control_key = Keycode.SHIFT

The keyboard object!
time.sleep(1) # Sleep for a bit to avoid a race condition on some systems
keyboard = Keyboard(usb_hid.devices)
keyboard_layout = KeyboardLayoutUS(keyboard) # We're in the US :)

Make all pin objects inputs with pullups
for pin in keypress_pins:

key_pin = digitalio.DigitalInOut(pin)

©Adafruit Industries Page 216 of 259

key_pin.direction = digitalio.Direction.INPUT
key_pin.pull = digitalio.Pull.UP
key_pin_array.append(key_pin)

For most CircuitPython boards:
led = digitalio.DigitalInOut(board.LED)
For QT Py M0:
led = digitalio.DigitalInOut(board.SCK)
led.direction = digitalio.Direction.OUTPUT

print("Waiting for key pin...")

while True:
Check each pin
for key_pin in key_pin_array:

if not key_pin.value: # Is it grounded?
i = key_pin_array.index(key_pin)
print("Pin #%d is grounded." % i)

Turn on the red LED
led.value = True

while not key_pin.value:
pass # Wait for it to be ungrounded!

"Type" the Keycode or string
key = keys_pressed[i] # Get the corresponding Keycode or string
if isinstance(key, str): # If it's a string...

keyboard_layout.write(key) # ...Print the string
else: # If it's not a string...

keyboard.press(control_key, key) # "Press"...
keyboard.release_all() # ..."Release"!

Turn off the red LED
led.value = False

time.sleep(0.01)

Connect pin A1 or A2 to ground, using a wire or alligator clip, then disconnect it to
send the key press "A" or the string "Hello world!"

This wiring example shows A1 and A2
connected to ground.

Remember, on Trinket, A1 and A2 are
labeled 2 and 0! On other boards, you will
have A1 and A2 labeled as expected.

Create the Objects and Variables

First, we assign some variables for later use. We create three arrays assigned to
variables: keypress_pins , key_pin_array , and keys_pressed . The first is the

©Adafruit Industries Page 217 of 259

https://learn.adafruit.com//assets/52710
https://learn.adafruit.com//assets/52710

pins we're going to use. The second is empty because we're going to fill it later. The
third is what we would like our "keyboard" to output - in this case the letter "A" and the
phrase, "Hello world!". We create our last variable assigned to control_key which
allows us to later apply the shift key to our keypress. We'll be using two keypresses,
but you can have up to six keypresses at once.

Next keyboard and keyboard_layout objects are created. We only have US right
now (if you make other layouts please submit a GitHub pull request!). The
time.sleep(1) avoids an error that can happen if the program gets run as soon as
the board gets plugged in, before the host computer finishes connecting to the board.

Then we take the pins we chose above, and create the pin objects, set the direction
and give them each a pullup. Then we apply the pin objects to key_pin_array so
we can use them later.

Next we set up the little red LED to so we can use it as a status light.

The last thing we do before we start our loop is print , "Waiting for key pin..." so you
know the code is ready and waiting!

The Main Loop

Inside the loop, we check each pin to see if the state has changed, i.e. you connected
the pin to ground. Once it changes, it prints, "Pin # grounded." to let you know the
ground state has been detected. Then we turn on the red LED. The code waits for the
state to change again, i.e. it waits for you to unground the pin by disconnecting the
wire attached to the pin from ground.

Then the code gets the corresponding keys pressed from our array. If you grounded
and ungrounded A1, the code retrieves the keypress a , if you grounded and
ungrounded A2, the code retrieves the string, "Hello world!"

If the code finds that it's retrieved a string, it prints the string, using the
keyboard_layout to determine the keypresses. Otherwise, the code prints the
keypress from the control_key and the keypress "a", which result in "A". Then it
calls keyboard.release_all() . You always want to call this soon after a keypress
or you'll end up with a stuck key which is really annoying!

Instead of using a wire to ground the pins, you can try wiring up buttons like we did in
CircuitPython Digital In & Out (https://adafru.it/Beo). Try altering the code to add more
pins for more keypress options!

©Adafruit Industries Page 218 of 259

file:///home/circuitpython-essentials/circuitpython-digital-in-out

Non-US Keyboard Layouts

The code above uses KeyboardLayoutUS. If you would like to emulate a non-US
keyboard, a number of other keyboard layout classes are available (https://adafru.it/
UYD).

CircuitPython Mouse Emulator
To use with CircuitPython, you need to first install a few libraries, into the lib folder on
your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file. Extract the contents of the zip file, open the directory
CircuitPython_Essentials/CircuitPython_HID_Mouse/ and then click on the directory
that matches the version of CircuitPython you're using and copy the contents of that
directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials HID Mouse example"""
import time
import analogio
import board
import digitalio
import usb_hid
from adafruit_hid.mouse import Mouse

mouse = Mouse(usb_hid.devices)

x_axis = analogio.AnalogIn(board.A0)
y_axis = analogio.AnalogIn(board.A1)
select = digitalio.DigitalInOut(board.A2)
select.direction = digitalio.Direction.INPUT
select.pull = digitalio.Pull.UP

pot_min = 0.00
pot_max = 3.29

©Adafruit Industries Page 219 of 259

https://github.com/Neradoc/Circuitpython_Keyboard_Layouts

step = (pot_max - pot_min) / 20.0

def get_voltage(pin):
return (pin.value * 3.3) / 65536

def steps(axis):
""" Maps the potentiometer voltage range to 0-20 """
return round((axis - pot_min) / step)

while True:
x = get_voltage(x_axis)
y = get_voltage(y_axis)

if select.value is False:
mouse.click(Mouse.LEFT_BUTTON)
time.sleep(0.2) # Debounce delay

if steps(x) > 11.0:
print(steps(x))
mouse.move(x=1)

if steps(x) < 9.0:
print(steps(x))
mouse.move(x=-1)

if steps(x) > 19.0:
print(steps(x))
mouse.move(x=8)

if steps(x) < 1.0:
print(steps(x))
mouse.move(x=-8)

if steps(y) > 11.0:
print(steps(y))
mouse.move(y=-1)

if steps(y) < 9.0:
print(steps(y))
mouse.move(y=1)

if steps(y) > 19.0:
print(steps(y))
mouse.move(y=-8)

if steps(y) < 1.0:
print(steps(y))
mouse.move(y=8)

For this example, we've wired up a 2-axis thumb joystick with a select button. We use
this to emulate the mouse movement and the mouse left-button click. To wire up this
joytick:

Connect VCC on the joystick to the 3V on your board. Connect ground to
ground.
Connect Xout on the joystick to pin A0 on your board.
Connect Yout on the joystick to pin A1 on your board.
Connect Sel on the joystick to pin A2 on your board.

•

•
•
•

©Adafruit Industries Page 220 of 259

Remember, Trinket's pins are labeled differently. Check the Trinket Pinouts
page (https://adafru.it/AMd) to verify your wiring.

To use this demo, simply move the joystick around. The mouse will move slowly if you
move the joystick a little off center, and more quickly if you move it as far as it goes.
Press down on the joystick to click the mouse. Awesome! Now let's take a look at the
code.

Create the Objects and Variables

First we create the mouse object.

Next, we set x_axis and y_axis to pins A0 and A1 . Then we set select to A2 ,
set it as input and give it a pullup.

The x and y axis on the joystick act like 2 potentiometers. We'll be using them just like
we did in CircuitPython Analog In (https://adafru.it/Bep). We set pot_min and
pot_max to be the minimum and maximum voltage read from the potentiometers. We
assign step = (pot_max - pot_min) / 20.0 to use in a helper function.

©Adafruit Industries Page 221 of 259

file:///home/adafruit-trinket-m0-circuitpython-arduino/pinouts#unique-pad-capabilities
file:///home/adafruit-trinket-m0-circuitpython-arduino/pinouts#unique-pad-capabilities
file:///home/circuitpython-essentials/circuitpython-analog-in

CircuitPython HID Mouse Helpers

First we have the get_voltage() helper so we can get the correct readings from
the potentiometers. Look familiar? We learned about it in Analog In (https://adafru.it/
Bep).

Second, we have steps(axis) . To use it, you provide it with the axis you're reading.
This is where we're going to use the step variable we assigned earlier. The
potentiometer range is 0-3.29. This is a small range. It's even smaller with the joystick
because the joystick sits at the center of this range, 1.66, and the + and - of each axis
is above and below this number. Since we need to have thresholds in our code, we're
going to map that range of 0-3.29 to while numbers between 0-20.0 using this helper
function. That way we can simplify our code and use larger ranges for our thresholds
instead of trying to figure out tiny decimal number changes.

Main Loop

First we assign x and y to read the voltages from x_axis and y_axis .

Next, we check to see when the state of the select button is False . It defaults to
True when it is not pressed, so if the state is False , the button has been pressed.
When it's pressed, it sends the command to click the left mouse button. The
time.sleep(0.2) prevents it from reading multiple clicks when you've only clicked
once.

Then we use the steps() function to set our mouse movement. There are two sets
of two if statements for each axis. Remember that 10 is the center step, as we've
mapped the range 0-20 . The first set for each axis says if the joystick moves 1 step
off center (left or right for the x axis and up or down for the y axis), to move the mouse
the appropriate direction by 1 unit. The second set for each axis says if the joystick is
moved to the lowest or highest step for each axis, to move the mouse the appropriate
direction by 8 units. That way you have the option to move the mouse slowly or
quickly!

To see what step the joystick is at when you're moving it, uncomment the print
statements by removing the # from the lines that look like # print(steps(x)) ,
and connecting to the serial console to see the output. Consider only uncommenting
one set at a time, or you end up with a huge amount of information scrolling very
quickly, which can be difficult to read!

©Adafruit Industries Page 222 of 259

file:///home/circuitpython-essentials/circuitpython-analog-in#get-voltage-helper

CircuitPython CPU Temp
There is a CPU temperature sensor built into every ATSAMD21, ATSAMD51 and
nRF52840 chips. CircuitPython makes it really simple to read the data from this
sensor. This works on the Adafruit CircuitPython boards it's built into the
microcontroller used for these boards.

The data is read using two simple commands. We're going to enter them in the REPL.
Plug in your board, connect to the serial console (https://adafru.it/Bec), and enter the
REPL (https://adafru.it/Awz). Then, enter the following commands into the REPL:

import microcontroller
microcontroller.cpu.temperature

That's it! You've printed the temperature in Celsius to the REPL. Note that it's not
exactly the ambient temperature and it's not super precise. But it's close!

If you'd like to print it out in Fahrenheit, use this simple formula: Celsius * (9/5) + 32.
It's super easy to do math using CircuitPython. Check it out!

CircuitPython Storage
CircuitPython-compatible microcontrollers show up as a CIRCUITPY drive when
plugged into your computer, allowing you to edit code directly on the board. Perhaps
you've wondered whether or not you can write data from CircuitPython directly to the
board to act as a data logger. The answer is yes!

For more detail check out the documentation at https://
circuitpython.readthedocs.io/projects/hid/en/latest/

Note that the temperature sensor built into the nRF52840 has a resolution of
0.25 degrees Celsius, so any temperature you print out will be in 0.25 degree
increments.

©Adafruit Industries Page 223 of 259

https://circuitpython.readthedocs.io/projects/hid/en/latest/
https://circuitpython.readthedocs.io/projects/hid/en/latest/
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
file:///home/welcome-to-circuitpython/the-repl
file:///home/welcome-to-circuitpython/the-repl

The storage module in CircuitPython enables you to write code that allows
CircuitPython to write data to the CIRCUITPY drive. This process requires you to
include a boot.py file on your CIRCUITPY drive, along side your code.py file.

The boot.py file is special - the code within it is executed when CircuitPython starts
up, either from a hard reset or powering up the board. It is not run on soft reset, for
example, if you reload the board from the serial console or the REPL. This is in
contrast to the code within code.py, which is executed after CircuitPython is already
running.

The CIRCUITPY drive is typically writable by your computer; this is what allows you to
edit your code directly on the board. The reason you need a boot.py file is that you
have to set the filesystem to be read-only by your computer to allow it to be writable
by CircuitPython. This is because CircuitPython cannot write to the filesystem at the
same time as your computer. Doing so can lead to filesystem corruption and loss of all
content on the drive, so CircuitPython is designed to only allow one at at time.

boot.py

SPDX-FileCopyrightText: 2017 Limor Fried for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials Storage logging boot.py file"""
import board
import digitalio
import storage

For Gemma M0, Trinket M0, Metro M0/M4 Express, ItsyBitsy M0/M4 Express
switch = digitalio.DigitalInOut(board.D2)

For Feather M0/M4 Express
switch = digitalio.DigitalInOut(board.D5)

For Circuit Playground Express, Circuit Playground Bluefruit
switch = digitalio.DigitalInOut(board.D7)

switch.direction = digitalio.Direction.INPUT
switch.pull = digitalio.Pull.UP

If the switch pin is connected to ground CircuitPython can write to the drive
storage.remount("/", readonly=switch.value)

You can only have either your computer edit the CIRCUITPY drive files, or
CircuitPython. You cannot have both write to the drive at the same time. (Bad
Things Will Happen so we do not allow you to do it!)

©Adafruit Industries Page 224 of 259

The storage.remount() command has a readonly keyword argument. This
argument refers to the read/write state of CircuitPython. It does NOT refer to the
read/write state of your computer.

When the physical pin is connected to ground, it returns False .
The readonly argument in boot.py is set to the value of the pin. When
the value=True , the CIRCUITPY drive is read-only to CircuitPython (and writable by
your computer). When the value=False , the CIRCUITPY drive is writable by
CircuitPython (and read-only by your computer).

For Gemma M0, Trinket M0, Metro M0 Express, Metro M4 Express, ItsyBitsy M0
Express and ItsyBitsy M4 Express, no changes to the initial code are needed.

For Feather M0 Express and Feather M4 Express, comment out switch =
digitalio.DigitalInOut(board.D2) , and uncomment switch =
digitalio.DigitalInOut(board.D5) .

For Circuit Playground Express and Circuit Playground Bluefruit, comment out
switch = digitalio.DigitalInOut(board.D2) , and uncomment switch =
digitalio.DigitalInOut(board.D7) . Remember, D7 is the onboard slide switch,
so there's no extra wires or alligator clips needed.

On the Circuit Playground Express or Circuit Playground Bluefruit, the switch is in the
right position (closer to the ear icon on the silkscreen) it returns False , and the CIRC
UITPY drive will be writable by CircuitPython. If the switch is in the left position (closer
to the music icon on the silkscreen), it returns True , and the CIRCUITPY drive will be
writable by your computer.

Installing Project Code

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Essentials/CircuitPython_Logger/ and then
click on the directory that matches the version of CircuitPython you're using and copy
the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

Remember: To "comment out" a line, put a # and a space before it. To
"uncomment" a line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 225 of 259

SPDX-FileCopyrightText: 2017 Limor Fried for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials Storage logging example"""
import time
import board
import digitalio
import microcontroller

For most CircuitPython boards:
led = digitalio.DigitalInOut(board.LED)
For QT Py M0:
led = digitalio.DigitalInOut(board.SCK)
led.switch_to_output()

try:
with open("/temperature.txt", "a") as fp:

while True:
temp = microcontroller.cpu.temperature
do the C-to-F conversion here if you would like
fp.write('{0:f}\n'.format(temp))
fp.flush()
led.value = not led.value
time.sleep(1)

except OSError as e: # Typically when the filesystem isn't writeable...
delay = 0.5 # ...blink the LED every half second.
if e.args[0] == 28: # If the file system is full...

delay = 0.25 # ...blink the LED faster!
while True:

led.value = not led.value
time.sleep(delay)

Logging the Temperature

The way boot.py works is by checking to see if the pin you specified in the switch
setup in your code is connected to a ground pin. If it is, it changes the read-write state
of the file system, so the CircuitPython core can begin logging the temperature to the
board.

For help finding the correct pins, see the wiring diagrams and information in the Find
the Pins section of the CircuitPython Digital In & Out guide (https://adafru.it/Bes).

The filesystem will NOT automatically be set to read-only after you copy these
files over! You'll still be able to edit files on CIRCUITPY after saving this boot.py.

©Adafruit Industries Page 226 of 259

file:///home/adafruit-trinket-m0-circuitpython-arduino/circuitpython-digital-in-out#find-the-pins
file:///home/adafruit-trinket-m0-circuitpython-arduino/circuitpython-digital-in-out#find-the-pins

Instead of wiring up a switch, however, you'll be connecting the pin directly to ground
with alligator clips or jumper wires.

Once you copied the files to your board, eject it and unplug it from your computer. If
you're using your Circuit Playground Express, all you have to do is make sure the
switch is to the right. Otherwise, use alligator clips or jumper wires to connect the
chosen pin to ground. Then, plug your board back into your computer.

You will not be able to edit code on your CIRCUITPY drive anymore!

The red LED should blink once a second and you will see a new temperature.txt file
on CIRCUITPY.

boot.py only runs on first boot of the device, not if you re-load the serial console
with ctrl+D or if you save a file. You must EJECT the USB drive, then physically
press the reset button!

©Adafruit Industries Page 227 of 259

This file gets updated once per second, but you won't see data come in live. Instead,
when you're ready to grab the data, eject and unplug your board. For CPX, move the
switch to the left, otherwise remove the wire connecting the pin to ground. Now it will
be possible for you to write to the filesystem from your computer again, but it will not
be logging data.

We have a more detailed guide on this project available here: CPU Temperature
Logging with CircuitPython (https://adafru.it/zuF). If you'd like more details, check it
out!

CircuitPython Expectations
As we continue to develop CircuitPython and create new releases, we will stop
supporting older releases. Visit https://circuitpython.org/downloads to download
the latest version of CircuitPython for your board. You must download the
CircuitPython Library Bundle that matches your version of CircuitPython. Please
update CircuitPython and then visit https://circuitpython.org/libraries to download
the latest Library Bundle.

©Adafruit Industries Page 228 of 259

file:///home/cpu-temperature-logging-with-circuit-python
file:///home/cpu-temperature-logging-with-circuit-python
https://circuitpython.org/downloads
https://circuitpython.org/libraries

Always Run the Latest Version of
CircuitPython and Libraries
As we continue to develop CircuitPython and create new releases, we will stop
supporting older releases. You need to update to the latest CircuitPython (https://
adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your version of
CircuitPython. Please update CircuitPython and then download the latest
bundle (https://adafru.it/ENC).

As we release new versions of CircuitPython, we will stop providing the previous
bundles as automatically created downloads on the Adafruit CircuitPython Library
Bundle repo. If you must continue to use an earlier version, you can still download the
appropriate version of mpy-cross from the particular release of CircuitPython on the
CircuitPython repo and create your own compatible .mpy library files. However, it is
best to update to the latest for both CircuitPython and the library bundle.

I have to continue using CircuitPython 3.x
or 2.x, where can I find compatible
libraries?
We are no longer building or supporting the CircuitPython 2.x and 3.x library
bundles. We highly encourage you to update CircuitPython to the latest version (http
s://adafru.it/Em8) and use the current version of the libraries (https://adafru.it/ENC).
However, if for some reason you cannot update, you can find the last available 2.x
build here (https://adafru.it/FJA) and the last available 3.x build here (https://adafru.it/
FJB).

Switching Between CircuitPython and
Arduino
Many of the CircuitPython boards also run Arduino. But how do you switch between
the two? Switching between CircuitPython and Arduino is easy.

If you're currently running Arduino and would like to start using CircuitPython, follow
the steps found in Welcome to CircuitPython: Installing CircuitPython (https://adafru.it/
Amd).

©Adafruit Industries Page 229 of 259

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

If you're currently running CircuitPython and would like to start using Arduino, plug in
your board, and then load your Arduino sketch. If there are any issues, you can
double tap the reset button to get into the bootloader and then try loading your
sketch. Always backup any files you're using with CircuitPython that you want to save
as they could be deleted.

That's it! It's super simple to switch between the two.

The Difference Between Express And Non-
Express Boards
We often reference "Express" and "Non-Express" boards when discussing
CircuitPython. What does this mean?

Express refers to the inclusion of an extra 2MB flash chip on the board that provides
you with extra space for CircuitPython and your code. This means that we're able to
include more functionality in CircuitPython and you're able to do more with your code
on an Express board than you would on a non-Express board.

Express boards include Circuit Playground Express, ItsyBitsy M0 Express, Feather M0
Express, Metro M0 Express and Metro M4 Express.

Non-Express boards include Trinket M0, Gemma M0, QT Py, Feather M0 Basic, and
other non-Express Feather M0 variants.

Non-Express Boards: Gemma, Trinket, and
QT Py
CircuitPython runs nicely on the Gemma M0, Trinket M0, or QT Py M0 but there are
some constraints

Small Disk Space

Since we use the internal flash for disk, and that's shared with runtime code, its
limited! Only about 50KB of space.

©Adafruit Industries Page 230 of 259

No Audio or NVM

Part of giving up that FLASH for disk means we couldn't fit everything in. There is, at
this time, no support for hardware audio playpack or NVM 'eeprom'. Modules
audioio and bitbangio are not included. For that support, check out the Circuit
Playground Express or other Express boards.

However, I2C, UART, capacitive touch, NeoPixel, DotStar, PWM, analog in and out,
digital IO, logging storage, and HID do work! Check the CircuitPython Essentials for
examples of all of these.

Differences Between CircuitPython and
MicroPython
For the differences between CircuitPython and MicroPython, check out the
CircuitPython documentation (https://adafru.it/Bvz).

Differences Between CircuitPython and
Python
Python (also known as CPython) is the language that MicroPython and CircuitPython
are based on. There are many similarities, but there are also many differences. This is
a list of a few of the differences.

Python Libraries

Python is advertised as having "batteries included", meaning that many standard
libraries are included. Unfortunately, for space reasons, many Python libraries are not
available. So for instance while we wish you could import numpy , numpy isn't
available (look for the ulab library for similar functions to numpy which works on
many microcontroller boards). So you may have to port some code over yourself!

Integers in CircuitPython

On the non-Express boards, integers can only be up to 31 bits long. Integers of
unlimited size are not supported. The largest positive integer that can be represented
is 230-1, 1073741823, and the most negative integer possible is -230, -1073741824.

©Adafruit Industries Page 231 of 259

https://circuitpython.readthedocs.io/en/latest/README.html#differences-from-micropython

As of CircuitPython 3.0, Express boards have arbitrarily long integers as in Python.

Floating Point Numbers and Digits of Precision for Floats in CircuitPython

Floating point numbers are single precision in CircuitPython (not double precision as
in Python). The largest floating point magnitude that can be represented is about
+/-3.4e38. The smallest magnitude that can be represented with full accuracy is about
+/-1.7e-38, though numbers as small as +/-5.6e-45 can be represented with reduced
accuracy.

CircuitPython's floats have 8 bits of exponent and 22 bits of mantissa (not 24 like
regular single precision floating point), which is about five or six decimal digits of
precision.

Differences between MicroPython and Python

For a more detailed list of the differences between CircuitPython and Python, you can
look at the MicroPython documentation. We keep up with MicroPython stable
releases, so check out the core 'differences' they document here. (https://adafru.it/
zwA)

MakeCode

©Adafruit Industries Page 232 of 259

http://docs.micropython.org/en/latest/pyboard/genrst/index.html
http://docs.micropython.org/en/latest/pyboard/genrst/index.html

Microsoft MakeCode has been augmented to support more than the Adafruit Circuit
Playground Express.

Using maker.makecode.com (https://adafru.it/C9N), you can use other Adafruit
microcontrollers, breadboards and other components!

See the following pages for more information.

What is MakeCode Maker?

MakeCode Maker, https://maker.makecode.com, is a web-based code editor for
physical computing. It provides a block editor, similar to Scratch or Code.org, and also
a JavaScript editor for more advanced users.

Some of the key features of MakeCode are:

web based editor: nothing to install
cross platform: works in most modern browsers from tiny phone to giant touch
screens
compilation in the browser: the compiler runs in your browser, it's fast and
works offline
blocks + JavaScript: drag and drop blocks or type JavaScript, MakeCode let's
you go back and forth between the two.
works offline: once you've loaded the editor, it stays cached in your browser.
event based runtime: easily respond to button clicks, shake gestures and more

How is it related to makecode.adafruit.com ?
makecode.adafruit.com (https://adafru.it/wmd) and maker.makecode.com (https://
adafru.it/C9N) are editors built using the MakeCode (https://adafru.it/Bhz) project.

•
•

•

•

•
•

©Adafruit Industries Page 233 of 259

https://maker.makecode.com/
https://maker.makecode.com
https://makecode.adafruit.com/
https://maker.makecode.com/
https://github.com/Microsoft/pxt

In both editors, one can use drag-and-drop blocks or JavaScript to program micro-
controllers.

makecode.adafruit.com (https://adafru.it/wmd) specifically applies to
the Adafruit Circuit Playground Express only
maker.makecode.com (https://adafru.it/C9N) aims at supporting the Adafruit
Express boards (and more boards from different manufacturers), with an
emphasis on breadboarding support.

Is it open source?
Yes, Maker is open source under MIT at https://github.com/Microsoft/pxt-
maker (https://adafru.it/ND5).

Adafruit METRO M0 Express - designed
for CircuitPython
Metro is our series of microcontroller
boards for use with the Arduino IDE. This
new Metro M0 Express board looks a
whole lot like our
https://www.adafruit.com/product/3505

Adafruit Feather M0 Express
At the Feather M0's heart is an
ATSAMD21G18 ARM Cortex M0+
processor, clocked at 48 MHz and at 3.3V
logic, the same one used in the new
https://www.adafruit.com/product/3403

•

•

©Adafruit Industries Page 234 of 259

https://makecode.adafruit.com/
https://maker.makecode.com/
https://github.com/Microsoft/pxt-maker,
https://github.com/Microsoft/pxt-maker,
https://www.adafruit.com/product/3505
https://www.adafruit.com/product/3505
https://www.adafruit.com/product/3505
https://www.adafruit.com/product/3403
https://www.adafruit.com/product/3403

Adafruit GEMMA M0 - Miniature wearable
electronic platform
The Adafruit Gemma M0 is a super small
microcontroller board, with just enough
built-in to create many simple projects. It
may look small and cute: round, about
the...
https://www.adafruit.com/product/3501

Adafruit Trinket M0 - for use with
CircuitPython & Arduino IDE
The Adafruit Trinket M0 may be small, but
do not be fooled by its size! It's a tiny
microcontroller board, built around the
Atmel ATSAMD21, a little chip with a lot...
https://www.adafruit.com/product/3500

Editing Blocks
The block editor is the easiest way to get started with MakeCode Maker. You can drag
and drop blocks from the category list. Each time you make a change to the blocks,
the simulator will automatically restart and run the code. You can test your program in
the browser! The simulator will also generate the wiring for your breadboard for
simple programs.

©Adafruit Industries Page 235 of 259

https://www.adafruit.com/product/3501
https://www.adafruit.com/product/3501
https://www.adafruit.com/product/3501
https://www.adafruit.com/product/3500
https://www.adafruit.com/product/3500
https://www.adafruit.com/product/3500

Blinky!

The animation above shows to use the blocks to create a program that blinks an LED.

Creating a blink effect is done by setting the pin HIGH, pause for a little, then set the
pin LOW, pause for a little, then repeat forever.

forever runs blocks in a loop with a 20ms pause in between (it is similar to
Arduino loop).
digital write pin sets the pin to high or low
pause blocks the current thread for 100ms. If other events or forever loops are
running, they have the opporunity to run in parallel.

Editing JavaScript
MakeCode allows you to author your programs in a flavor of JavaScript optimized for
micro-controllers. The code editor comes with error highlighting, auto-completion and
other goodies. It is the same code editor that powers Visual Studio Code.

On the maker home screen, click on "New Project", then select which board you
want to use (you can change board later too).

•

•
•

©Adafruit Industries Page 236 of 259

Blocks to JavaScript

Click on the "Blocks / JavaScript" toggle on top of the editor to enter the JavaScript
mode. Your blocks will automatically be converted to JavaScript.

Downloading and Flashing
Getting your code into your device is very easy with MakeCode. You do not need to
install any software on your machine and the process takes two steps:

Step 1: Connect your board via USB
Step 2: Compile and Download the .uf2 file into your board drive

We are going to go through these two steps in detail.

•
•

©Adafruit Industries Page 237 of 259

Step 1: Connect your board via USB

Connect your board to your computer via a USB cable. You should see a MAKECODE
drive appear in your file explorer/finder. If your board is in bootloader mode, you will
see drive names like METROBOOT or GEMMABOOT. We will call those
boardnameBOOT.

Step 2: Test your code in the simulator

Let's first verify that our code compiles properly in MakeCode.

MakeCode has a built-in simulator that re-loads and re-runs code when restarted. This
is an easy way to both ensure that our code compiles and simulate it before moving it
onto the board. The refresh button re-loads the simulator with your latest version of
block code.

If it is your first time running MakeCode or if you have previously installed
Arduino or CircuitPython, you may need to double press the reset button to get
your board into bootloader mode.

©Adafruit Industries Page 238 of 259

Step 3: Download and flash your code

If your board is working in the simulator, it's time to download it to your actual board!
Click the Download button. It will generate a .uf2 file and download it to your
computer. UF2 (https://adafru.it/vPE) is a file format designed by Microsoft to flash
microcontrollers over USB.

General Steps to copy over your program (not specific to any Operating
system)

* Ensure your board is connected via USB.
* Find the .uf2 file generated by MakeCode in your file explorer. Copy it to the
MAKECODE or boardnameBOOT volume.

If you receive a "we could not run this project" error, please check over your
code for errors.

©Adafruit Industries Page 239 of 259

https://github.com/Microsoft/uf2

* The status LED on the board will blink while the file is transferring. Once it's done
transferring your file, the board will automatically reset and start running your code
(just like in the simulator!)

Saving and Sharing
Extracting your code from the board

The .uf2 file you created by clicking on the Compile button in MakeCode also
contains the source code of your program!

You can open this file in MakeCode by dragging and dropping it into the browser to
edit it.

You can also find the current .uf2 file running on the MAKECODE or boardnameBOOT
drive.

Sharing

You can share your code by clicking on the share button. After confirmation,
MakeCode will create a short unique URL for your code. Anyone with that URL will be
able to reload the code.

These URLs can also be used to embed the editor your blog or web pages! Just copy
paste the URL in your text editor and (if it supports oEmbed) it will automatically load
it in your page.

On a Mac, you can safely ignore the "Disk Not Ejected Properly" notification that
may appear after copying your .uf2 file.

©Adafruit Industries Page 240 of 259

Custom Extensions
MakeCode allows to package and share code as Extensions. Extensions are stored
as GitHub repositories and can be edited directly from the MakeCode editor.

Account setup

First, you need a GitHub account if you don't have one yet. GitHub is the largest host
of source code in the world, with over 30 million users.

Once you have your account, you'll need to tie the MakeCode web app to your
account. To do that, open any project in https://maker.makecode.com, go to the Gear
Wheel menu on top, and select Extensions. At the bottom, there should be a link to
log in to GitHub. A dialog will appear asking you to generate a GitHub token. Follow
the instructions and paste the token into the dialog.

Once you've logged in, go back to the home screen. Now, the dialog that comes up
after you press the Import button will have an additional option to list your GitHub
repositories or create a new one.
Additionally, the Import URL option will now support https://github.com/...
URLs, which is useful if you can't find your repository in the list (especially
organizational repos), or as way to search the list faster using a copy/paste of the
URL.

©Adafruit Industries Page 241 of 259

https://github.com
https://github.com/join
https://maker.makecode.com

If you import a completely empty repo, or create a fresh one, MakeCode will
automatically initialize it with pxt.json and other supporting files. If you import a non-
empty repo without the pxt.json file, you will be asked if you want it initialized. Note
that this might overwrite your existing files.

Commit and push

Once you have your repo set up, edit files as usual. Whenever you get to a stable
state, or just every now and
then to keep history and insure against losing your work, push the changes to GitHub.
This is done with a little GitHub sync button on top of the Explorer. The button will
check if there are any pending changes to check in. If there are, it will create a
commit, pull the latest changes from GitHub, merge or fast-forward the commit if
needed, and push the results to GitHub.

©Adafruit Industries Page 242 of 259

If there are changes, you will be asked for a commit message. Try to write something
meaningful, like
Fixed temperature reading in sub-freezing conditions or Added
mysensor.readTemperature() function.

When describing changes, you are also given an option to bump the version number.
This is a signal that the version you're pushing is stable and the users should upgrade
to it. When your package is first referenced, the latest bumped version is used.
Similarly, if there is a newer bumped version, a little upgrade button will appear next
to the package. Commits without bump are generally not accessible to most users, so
they are mostly for you to keep track of things.

We do not really distinguish between a commit, push, and pull - it all happens at once
in the sync operation.

You can view a history of changes by following the version number link on the Project
Settings page.

There is also another button next to the GitHub sync - you can use it to add new files
to the project.
This is mostly to help keep the project organized. For our TypeScript compiler it
doesn't matter if you
use one big file or a bunch of smaller ones.

©Adafruit Industries Page 243 of 259

Conflicts

It's possible that multiple people are editing the same package at the same time
causing edit conflicts. This is similar to the situation where the same person edits the
package using several computers, browsers, or web sites. In the conflict description
below, for simplicity, we'll just concentrate on the case of multiple people working on
the same package.

Typically, two people would sync a GitHub package at the same version, and then
they both edit it. The first person pushes the changes successfully. When MakeCode
tries to push the changes from the second person,
it will notice that these are changes against a non-current version. It will create a
commit based on the previous version and try to use the standard git merge (run
server-side by GitHub). This usually succeeds if the two people edited different files,
or at least different parts of the file - you end up with both sets of changes logically
combined. There is no user interaction required in that case.

If the automatic merge fails, MakeCode will create a new branch, push the commit
there, and then create a pull request (PR) on GitHub. The dialog that appears after this
happens will let you go to the GitHub web site and resolve the conflicts. Before you
resolve conflicts and merge the PR, the master branch will not have your changes (it
will have changes from the other person, who managed to commit first). After creating
the PR, MakeCode moves your local version to the master branch (without your
changes), but don't despair they are not lost! Just resolve the conflict in GitHub and
sync to get all changes back. MakeCode will also sync automatically when you close
the PR dialog (presumably, after you resolved the conflict in another tab).

Testing your package

To test blocks in your package, press the New Project button on the home screen and
go to the Extensions dialog. It will list all your GitHub projects as available for
addition. Select your package and see what the blocks look like.

You can have one browser tab open with that test project, and another one with the
package. When you switch between them, they reload automatically.

For testing TypeScript APIs you don't need a separate project, and instead can
use the test.ts file in the package itself. It is only used when you run the package
directly, not when you add it to a project. You can put TypeScript test code in there.

©Adafruit Industries Page 244 of 259

UF2 Bootloader Details

Adafruit SAMD21 (M0) and SAMD51 (M4) boards feature an improved bootloader that
makes it easier than ever to flash different code onto the microcontroller. This
bootloader makes it easy to switch between Microsoft MakeCode, CircuitPython and
Arduino.

Instead of needing drivers or a separate program for flashing (say, bossac , jlink
or avrdude), one can simply drag a file onto a removable drive.

The format of the file is a little special. Due to 'operating system woes' you cannot just
drag a binary or hex file (trust us, we tried it, it isn't cross-platform compatible).
Instead, the format of the file has extra information to help the bootloader know
where the data goes. The format is called UF2 (USB Flashing Format). Microsoft
MakeCode generates UF2s for flashing and CircuitPython releases are also available
as UF2. You can also create your own UF2s from binary files using uf2tool, available
here. (https://adafru.it/vPE)

The bootloader is also BOSSA compatible, so it can be used with the Arduino IDE
which expects a BOSSA bootloader on ATSAMD-based boards

This is an information page for advanced users who are curious how we get code
from your computer into your Express board!

©Adafruit Industries Page 245 of 259

https://github.com/Microsoft/uf2
https://github.com/Microsoft/uf2

For more information about UF2, you can read a bunch more at the MakeCode
blog (https://adafru.it/w5A), then check out the UF2 file format specification. (https://
adafru.it/vPE)

Visit Adafruit's fork of the Microsoft UF2-samd bootloader GitHub repository (https://
adafru.it/Beu) for source code and releases of pre-built bootloaders on
CircuitPython.org (https://adafru.it/Em8).

Entering Bootloader Mode
The first step to loading new code onto your board is triggering the bootloader. It is
easily done by double tapping the reset button. Once the bootloader is active you will
see the small red LED fade in and out and a new drive will appear on your computer
with a name ending in BOOT. For example, feathers show up as FEATHERBOOT,
while the new CircuitPlayground shows up as CPLAYBOOT, Trinket M0 will show up
as TRINKETBOOT, and Gemma M0 will show up as GEMMABOOT

Furthermore, when the bootloader is active, it will change the color of one or more
onboard neopixels to indicate the connection status, red for disconnected and green
for connected. If the board is plugged in but still showing that its disconnected, try a
different USB cable. Some cables only provide power with no communication.

The bootloader is not needed when changing your CircuitPython code. Its only
needed when upgrading the CircuitPython core or changing between
CircuitPython, Arduino and Microsoft MakeCode.

©Adafruit Industries Page 246 of 259

https://makecode.com/blog/one-chip-to-flash-them-all
https://makecode.com/blog/one-chip-to-flash-them-all
https://github.com/Microsoft/uf2
https://github.com/adafruit/uf2-samd21
https://circuitpython.org/downloads

For example, here is a Feather M0 Express running a colorful Neopixel swirl. When
the reset button is double clicked (about half second between each click) the
NeoPixel will stay green to let you know the bootloader is active. When the reset
button is clicked once, the 'user program' (NeoPixel color swirl) restarts.

If the bootloader couldn't start, you will get a red NeoPixel LED.

That could mean that your USB cable is no good, it isn't connected to a computer, or
maybe the drivers could not enumerate. Try a new USB cable first. Then try another
port on your computer!

Once the bootloader is running, check your computer. You should see a USB Disk
drive...

©Adafruit Industries Page 247 of 259

Once the bootloader is successfully connected you can open the drive and browse
the virtual filesystem. This isn't the same filesystem as you use with CircuitPython or
Arduino. It should have three files:

CURRENT.UF2 - The current contents of the microcontroller flash.
INDEX.HTM - Links to Microsoft MakeCode.

 INFO_UF2.TXT - Includes bootloader version info. Please include it on bug
reports.

Using the Mass Storage Bootloader
To flash something new, simply drag any UF2 onto the drive. After the file is finished
copying, the bootloader will automatically restart. This usually causes a warning about
an unsafe eject of the drive. However, its not a problem. The bootloader knows when
everything is copied successfully.

•
•
•

©Adafruit Industries Page 248 of 259

You may get an alert from the OS that the file is being copied without it's properties.
You can just click Yes

You may also get get a complaint that the drive was ejected without warning. Don't
worry about this. The drive only ejects once the bootloader has verified and
completed the process of writing the new code

Using the BOSSA Bootloader
As mentioned before, the bootloader is also compatible with BOSSA, which is the
standard method of updating boards when in the Arduino IDE. It is a command-line
tool that can be used in any operating system. We won't cover the full use of the
bossac tool, suffice to say it can do quite a bit! More information is available at
ShumaTech (https://adafru.it/vQa).

Windows 7 Drivers

If you are running Windows 7 (or, goodness, something earlier?) You will need a Serial
Port driver file. Windows 10 users do not need this so skip this step.

©Adafruit Industries Page 249 of 259

http://www.shumatech.com/web/products/bossa

You can download our full driver package here:

Download Latest Adafruit Driver
Installer

https://adafru.it/AB0

Download and run the installer. We recommend just selecting all the serial port drivers
available (no harm to do so) and installing them.

Verifying Serial Port in Device Manager

If you're running Windows, its a good idea to verify the device showed up. Open your
Device Manager from the control panel and look under Ports (COM & LPT) for a
device called Feather M0 or Circuit Playground or whatever!

©Adafruit Industries Page 250 of 259

https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers_*.exe

If you see something like this, it means you did not install the drivers. Go back and try
again, then remove and re-plug the USB cable for your board

©Adafruit Industries Page 251 of 259

Running bossac on the command line

If you are using the Arduino IDE, this step is not required. But sometimes you want to
read/write custom binary files, say for loading CircuitPython or your own code. We
recommend using bossac v 1.7.0 (or greater), which has been tested. The Arduino
branch is most recommended (https://adafru.it/vQb).

You can download the latest builds here. (https://adafru.it/s1B) The mingw32 version
is for Windows, apple-darwin for Mac OSX and various linux options for Linux.
Once downloaded, extract the files from the zip and open the command line to the
directory with bossac .

With bossac version 1.9 or later, you must give an --offset parameter on the
command line to specify where to start writing the firmware in flash memory. This

With bossac versions 1.9 or later, you must use the --offset parameter on the
command line, and it must have the correct value for your board.

©Adafruit Industries Page 252 of 259

https://github.com/shumatech/BOSSA/tree/arduino
https://github.com/shumatech/BOSSA/tree/arduino
https://github.com/shumatech/BOSSA/releases

parameter was added in bossac 1.8.0 with a default of 0x2000 , but starting in 1.9, the
default offset was changed to 0x0000 , which is not what you want in most cases. If
you omit the argument for bossac 1.9 or later, you will probably see a "Verify Failed"
error from bossac. Remember to change the option for -p or --port to match the
port on your Mac.

Replace the filename below with the name of your downloaded .bin : it will vary
based on your board!

Using bossac Versions 1.7.0, 1.8

There is no --offset parameter available. Use a command line like this:

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R adafruit-circuitpython-bo

ardname-version.bin

For example,

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R adafruit-circuitpython-

feather_m0_express-3.0.0.bin

Using bossac Versions 1.9 or Later

For M0 boards, which have an 8kB bootloader, you must specify -offset=0x2000 ,
for example:

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R --offset=0x2000 adafruit-

circuitpython-feather_m0_express-3.0.0.bin

For M4 boards, which have a 16kB bootloader, you must specify -offset=0x4000 ,
for example:

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R --offset=0x4000 adafruit-

circuitpython-feather_m4_express-3.0.0.bin

This will e rase the chip, w rite the given file, v erify the write and R eset the board.
On Linux or MacOS you may need to run this command with sudo ./bossac ... , or
add yourself to the dialout group first.

©Adafruit Industries Page 253 of 259

Updating the bootloader
The UF2 bootloader is relatively new and while we've done a ton of testing, it may
contain bugs. Usually these bugs effect reliability rather than fully preventing the
bootloader from working. If the bootloader is flaky then you can try updating the
bootloader itself to potentially improve reliability.

If you're using MakeCode on a Mac, you need to make sure to upload the
bootloader to avoid a serious problem with newer versions of MacOS. See
instructions and more details here (https://adafru.it/ECU).

In general, you shouldn't have to update the bootloader! If you do think you're
having bootloader related issues, please post in the forums or discord.

Updating the bootloader is as easy as flashing CircuitPython, Arduino or MakeCode.
Simply enter the bootloader as above and then drag the update bootloader uf2 file
below. This uf2 contains a program which will unlock the bootloader section, update
the bootloader, and re-lock it. It will overwrite your existing code such as
CircuitPython or Arduino so make sure everything is backed up!

After the file is copied over, the bootloader will be updated and appear again. The
INFO_UF2.TXT file should show the newer version number inside.

For example:

UF2 Bootloader v2.0.0-adafruit.5 SFHWRO

Model: Metro M0

Board-ID: SAMD21G18A-Metro-v0

Lastly, reload your code from Arduino or MakeCode or flash the latest CircuitPython
core (https://adafru.it/Em8).

©Adafruit Industries Page 254 of 259

https://learn.adafruit.com/adafruit-circuit-playground-express/updating-the-bootloader
https://circuitpython.org/downloads
https://circuitpython.org/downloads

Below are the latest updaters for various boards. The latest versions can always be
found here (https://adafru.it/Bmg). Look for the update-bootloader... files, not
the bootloader... files.

Circuit Playground Express V3.7.0
update-bootloader.uf2

https://adafru.it/JcN

Feather M0 Express v3.7.0 update-
bootloader.uf2

https://adafru.it/JcO

Metro M0 Express v3.7.0 update-
bootloader.uf2

https://adafru.it/JcR

Gemma M0 v3.7.0 update-
bootloader.uf2

https://adafru.it/JcU

Trinket M0 v3.7.0 update-
bootloader.uf2

https://adafru.it/JcX

Itsy Bitsy M0 v3.7.0 update-
bootloader.uf2

https://adafru.it/Jc-

Grand Central M4 v3.7.0 update-
bootloader.uf2

https://adafru.it/Jd2

Latest version of update-
bootloader.uf2 for other boards.

Make sure you pick the right one.
https://adafru.it/Bmg

©Adafruit Industries Page 255 of 259

https://github.com/adafruit/uf2-samdx1/releases/latest
https://github.com/adafruit/uf2-samdx1/releases/download/v3.7.0/update-bootloader-circuitplay_m0-v3.7.0.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v3.7.0/update-bootloader-feather_m0_express-v3.7.0.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v3.7.0/update-bootloader-metro_m0-v3.7.0.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v3.7.0/update-bootloader-gemma_m0-v3.7.0.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v3.7.0/update-bootloader-trinket_m0-v3.7.0.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v3.7.0/update-bootloader-itsybitsy_m0-v3.7.0.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v3.7.0/update-bootloader-grandcentral_m4-v3.7.0.uf2
https://github.com/adafruit/uf2-samdx1/releases/latest

Getting Rid of Windows Pop-ups
If you do a lot of development on Windows with the UF2 bootloader, you may get
annoyed by the constant "Hey you inserted a drive what do you want to do" pop-ups.

Go to the Control Panel. Click on the
Hardware and Sound header

Click on the Autoplay header

Uncheck the box at the top, labeled Use
Autoplay for all devices

©Adafruit Industries Page 256 of 259

https://learn.adafruit.com//assets/41276
https://learn.adafruit.com//assets/41276
https://learn.adafruit.com//assets/41277
https://learn.adafruit.com//assets/41277
https://learn.adafruit.com//assets/41278
https://learn.adafruit.com//assets/41278

Making your own UF2
Making your own UF2 is easy! All you need is a .bin file of a program you wish to flash
and the Python conversion script (https://adafru.it/vZb). Make sure that your program
was compiled to start at 0x2000 (8k) for M0 boards or 0x4000 (16kB) for M4 boards.
The bootloader takes up the first 8kB (M0) or 16kB (M4). CircuitPython's linker
script (https://adafru.it/CXh) is an example on how to do that.

Once you have a .bin file, you simply need to run the Python conversion script over it.
Here is an example from the directory with uf2conv.py. This command will produce a
firmware.uf2 file in the same directory as the source firmware.bin. The uf2 can then
be flashed in the same way as above.

For programs with 0x2000 offset (default)
uf2conv.py -c -o build-circuitplayground_express/firmware.uf2 build-
circuitplayground_express/firmware.bin

For programs needing 0x4000 offset (M4 boards)
uf2conv.py -c -b 0x4000 -o build-metro_m4_express/firmware.uf2 build-
metro_M4_express/firmware.bin

Installing the bootloader on a fresh/bricked
board
If you somehow damaged your bootloader or maybe you have a new board, you can
use a JLink to re-install it.

Here's a Learn Guide explaining how to fix the bootloader on a variety of boards using
Atmel Studio (https://adafru.it/F5f)

Here's a short writeup by turbinenreiter on how to do it for the Feather M4 (but
adaptable to other boards) (https://adafru.it/ven)

Downloads
Feather M0 Express Shipped

Filesystem
https://adafru.it/B48

©Adafruit Industries Page 257 of 259

https://github.com/Microsoft/uf2/blob/master/utils/uf2conv.py
https://github.com/adafruit/circuitpython/blob/master/ports/atmel-samd/boards/samd21x18-bootloader.ld
https://github.com/adafruit/circuitpython/blob/master/ports/atmel-samd/boards/samd21x18-bootloader.ld
https://learn.adafruit.com/how-to-program-samd-bootloaders
https://learn.adafruit.com/how-to-program-samd-bootloaders
https://forums.adafruit.com/viewtopic.php?f=57&t=142170&p=707151#p707151
https://forums.adafruit.com/viewtopic.php?f=57&t=142170&p=707151#p707151
https://cdn-learn.adafruit.com/assets/assets/000/053/298/original/Feather_M0_Express_April_24_2018_Filesys.zip?1524693136

Datasheets
ATSAMD21 Datasheet (https://adafru.it/kUf) (the main chip on the Feather M0)
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/aP3)
EagleCAD PCB files in GitHub (https://adafru.it/vfS)
PDF for Feather M0 Board Diagram on GitHub (https://adafru.it/Zwa)

SVG for Feather M0 Board Diagram
https://adafru.it/Zwb

Firmware
'Classic' Feather M0 Bootloader - You'll need to program it in using an ST-Link, JLink
or other SWD-capable programmer. HEX available in the github repo (https://adafru.it/
kFh)

Schematic & Fabrication Print

•
•
•
•

©Adafruit Industries Page 258 of 259

https://www.adafruit.com/images/product-files/2772/atmel-42181-sam-d21_datasheet.pdf
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-Feather-M0-Express-PCB
https://github.com/adafruit/Adafruit-Feather-M0-Express-PCB/blob/master/Adafruit%20Feather%20M0%20Express%20pinout.pdf
https://cdn-learn.adafruit.com/assets/assets/000/110/622/original/Adafruit_Feather_M0_Express_pinout.svg?1649362838
https://github.com/adafruit/Adafruit-Feather-M0-Basic-Proto-PCB

©Adafruit Industries Page 259 of 259

	Adafruit Feather M0 Express
	Table of Contents
	Overview
	Pinouts
	Assembly
	Power Management
	Arduino IDE Setup
	Using with Arduino IDE
	Adapting Sketches to M0 & M4
	Using SPI Flash
	Feather HELP!
	What is CircuitPython?
	CircuitPython
	Installing the Mu Editor
	Creating and Editing Code
	Connecting to the Serial Console
	Interacting with the Serial Console
	The REPL
	CircuitPython Libraries
	Frequently Asked Questions
	Troubleshooting
	"Uninstalling" CircuitPython
	Welcome to the Community!
	CircuitPython Essentials
	CircuitPython Pins and Modules
	CircuitPython Built-Ins
	CircuitPython Digital In & Out
	CircuitPython Analog In
	CircuitPython Analog Out
	CircuitPython PWM
	CircuitPython Servo
	CircuitPython Cap Touch
	CircuitPython Internal RGB LED
	CircuitPython NeoPixel
	CircuitPython DotStar
	CircuitPython UART Serial
	CircuitPython I2C
	CircuitPython HID Keyboard and Mouse
	CircuitPython CPU Temp
	CircuitPython Storage
	CircuitPython Expectations
	MakeCode
	What is MakeCode Maker?
	Editing Blocks
	Editing JavaScript
	Downloading and Flashing
	Saving and Sharing
	Custom Extensions
	UF2 Bootloader Details
	Downloads

	Overview
	Pinouts
	Power Pins
	Logic pins
	SPI Flash and NeoPixel
	Other Pins!
	Debug Interface
	Assembly
	Header Options!
	Soldering in Plain Headers
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Soldering on Female Header
	Tape In Place
	Flip & Tack Solder
	And Solder!

	Power Management
	Battery + USB Power
	Power Supplies
	Measuring Battery
	ENable pin
	Alternative Power Options
	Arduino IDE Setup
	https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

	Using with Arduino IDE
	Install SAMD Support
	Install Adafruit SAMD
	Install Drivers (Windows 7 & 8 Only)
	Blink
	Successful Upload
	Compilation Issues
	Manually bootloading
	Ubuntu & Linux Issue Fix
	Adapting Sketches to M0 & M4
	Analog References
	Pin Outputs & Pullups
	Serial vs SerialUSB
	AnalogWrite / PWM on Feather/Metro M0
	analogWrite() PWM range
	analogWrite() DAC on A0
	Missing header files
	Bootloader Launching
	Aligned Memory Access
	Floating Point Conversion
	How Much RAM Available?
	Storing data in FLASH
	Pretty-Printing out registers
	M4 Performance Options
	CPU Speed (overclocking)
	Optimize
	Cache
	Max SPI and Max QSPI

	Enabling the Buck Converter on some M4 Boards
	Using SPI Flash
	Read & Write CircuitPython Files
	Format Flash Memory
	Datalogging Example
	Reading and Printing Files
	Full Usage Example
	Accessing SPI Flash
	Feather HELP!
	My ItsyBitsy/Feather stopped working when I unplugged the USB!
	My Feather never shows up as a COM or Serial port in the Arduino IDE
	Ack! I "did something" and now when I plug in the Itsy/Feather, it doesn't show up as a device anymore so I cant upload to it or fix it...
	I can't get the Itsy/Feather USB device to show up - I get "USB Device Malfunctioning" errors!
	I'm having problems with COM ports and my Itsy/Feather 32u4/M0
	I don't understand why the COM port disappears, this does not happen on my Arduino UNO!
	I'm trying to upload to my 32u4, getting "avrdude: butterfly_recv(): programmer is not responding" errors
	I'm trying to upload to my Feather M0, and I get this error "Connecting to programmer: .avrdude: butterfly_recv(): programmer is not responding"
	I'm trying to upload to my Feather and i get this error "avrdude: ser_recv(): programmer is not responding"
	I attached some wings to my Feather and now I can't read the battery voltage!
	The yellow LED Is flickering on my Feather, but no battery is plugged in, why is that?

	What is CircuitPython?
	CircuitPython is based on Python
	Why would I use CircuitPython?

	CircuitPython
	Set up CircuitPython Quick Start!
	Further Information

	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.
	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing

	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!
	Back to Editing Code...

	Naming Your Program File
	Connecting to the Serial Console
	Are you using Mu?
	Serial Console Issues or Delays on Linux
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Entering the REPL
	Interacting with the REPL

	Returning to the Serial Console
	CircuitPython Libraries
	The Adafruit Learn Guide Project Bundle
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle

	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle

	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board

	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples
	CircUp CLI Tool

	Frequently Asked Questions
	What are some common acronyms to know?
	Using Older Versions
	I have to continue using CircuitPython 7.x or earlier. Where can I find compatible libraries?
	Python Arithmetic
	Does CircuitPython support floating-point numbers?
	Does CircuitPython support long integers, like regular Python?
	Wireless Connectivity
	How do I connect to the Internet with CircuitPython?
	How do I do BLE (Bluetooth Low Energy) with CircuitPython?
	Are there other ways to communicate by radio with CircuitPython?
	Asyncio and Interrupts
	Is there asyncio support in CircuitPython?
	Does CircuitPython support interrupts?
	Status RGB LED
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	Memory Issues
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Unsupported Hardware
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 7.x or earlier. Where can I find compatible libraries?

	macOS Sonoma 14.x: Disk Errors Writing to CIRCUITPY
	Bootloader (boardnameBOOT) Drive Not Present
	You may have a different board.
	MakeCode
	macOS
	Windows 10
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear or Disappears Quickly
	Device Errors or Problems on Windows
	Serial Console in Mu Not Displaying Anything
	code.py Restarts Constantly
	CircuitPython RGB Status Light
	CircuitPython 7.0.0 and Later
	CircuitPython 6.3.0 and earlier

	Serial console showing ValueError: Incompatible .mpy file
	CIRCUITPY Drive Issues
	Safe Mode
	Entering Safe Mode in CircuitPython 7.x and Later
	Entering Safe Mode in CircuitPython 6.x
	In Safe Mode

	To erase CIRCUITPY: storage.erase_filesystem()
	Erase CIRCUITPY Without Access to the REPL
	For the specific boards listed below:
	For SAMD21 non-Express boards that have a UF2 bootloader:
	For SAMD21 non-Express boards that do not have a UF2 bootloader:

	Running Out of File Space on SAMD21 Non-Express Boards
	Delete something!
	Use tabs
	On MacOS?
	Prevent & Remove MacOS Hidden Files
	Copy Files on MacOS Without Creating Hidden Files
	Other MacOS Space-Saving Tips

	Device Locked Up or Boot Looping
	"Uninstalling" CircuitPython
	Backup Your Code

	Moving Circuit Playground Express to MakeCode
	Moving to Arduino
	Welcome to the Community!
	Adafruit Discord
	CircuitPython.org
	Pull Requests
	Open Issues
	Library Infrastructure Issues
	CircuitPython Localization

	Adafruit GitHub
	Adafruit Forums
	Read the Docs

	CircuitPython Essentials
	CircuitPython Pins and Modules
	CircuitPython Pins
	import board
	I2C, SPI, and UART
	What Are All the Available Names?
	Microcontroller Pin Names

	CircuitPython Built-In Modules
	CircuitPython Built-Ins
	Thing That Are Built In and Work
	Flow Control
	Math
	Tuples, Lists, Arrays, and Dictionaries
	Classes, Objects and Functions
	Lambdas
	Random Numbers

	CircuitPython Digital In & Out
	Find the pins!
	Read the Docs

	CircuitPython Analog In
	Creating the analog input
	get_voltage Helper
	Main Loop
	Changing It Up
	Wire it up

	Reading Analog Pin Values
	CircuitPython Analog Out
	Creating an analog output
	Setting the analog output
	Main Loop
	Find the pin

	CircuitPython PWM
	PWM with Fixed Frequency
	Create a PWM Output
	Main Loop
	PWM Output with Variable Frequency
	Installing Project Code
	Wire it up
	Where's My PWM?

	CircuitPython Servo
	Servo Wiring
	Standard Servo Code
	Continuous Servo Code

	CircuitPython Cap Touch
	Create the Touch Input
	Main Loop
	Find the Pin(s)

	CircuitPython Internal RGB LED
	Create the LED
	Brightness
	Main Loop
	Making Rainbows (Because Who Doesn't Love 'Em!)
	Circuit Playground Express Rainbow

	CircuitPython NeoPixel
	Wiring It Up
	The Code
	Create the LED
	NeoPixel Helpers
	Main Loop
	NeoPixel RGBW
	The Code
	Read the Docs

	CircuitPython DotStar
	Wire It Up
	The Code
	Create the LED
	DotStar Helpers
	Main Loop
	Is it SPI?
	Read the Docs

	CircuitPython UART Serial
	The Code
	Wire It Up
	Where's my UART?
	Trinket M0: Create UART before I2C

	CircuitPython I2C
	Wire It Up
	Find Your Sensor
	I2C Sensor Data
	Installing Project Code
	Where's my I2C?

	CircuitPython HID Keyboard and Mouse
	CircuitPython Keyboard Emulator
	Create the Objects and Variables
	The Main Loop
	Non-US Keyboard Layouts

	CircuitPython Mouse Emulator
	Create the Objects and Variables
	CircuitPython HID Mouse Helpers
	Main Loop

	CircuitPython CPU Temp
	CircuitPython Storage
	boot.py
	Installing Project Code
	Logging the Temperature

	CircuitPython Expectations
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 3.x or 2.x, where can I find compatible libraries?
	Switching Between CircuitPython and Arduino
	The Difference Between Express And Non-Express Boards
	Non-Express Boards: Gemma, Trinket, and QT Py
	Small Disk Space
	No Audio or NVM

	Differences Between CircuitPython and MicroPython
	Differences Between CircuitPython and Python
	Python Libraries
	Integers in CircuitPython
	Floating Point Numbers and Digits of Precision for Floats in CircuitPython
	Differences between MicroPython and Python

	MakeCode
	What is MakeCode Maker?
	How is it related to makecode.adafruit.com ?
	Is it open source?

	Editing Blocks
	Blinky!

	Editing JavaScript
	Blocks to JavaScript

	Downloading and Flashing
	Step 1: Connect your board via USB
	Step 2: Test your code in the simulator
	Step 3: Download and flash your code
	General Steps to copy over your program (not specific to any Operating system)

	Saving and Sharing
	Extracting your code from the board
	Sharing

	Custom Extensions
	Account setup
	Commit and push
	Conflicts
	Testing your package

	UF2 Bootloader Details
	Entering Bootloader Mode
	Using the Mass Storage Bootloader
	Using the BOSSA Bootloader
	Windows 7 Drivers
	Verifying Serial Port in Device Manager
	Running bossac on the command line
	Using bossac Versions 1.7.0, 1.8
	Using bossac Versions 1.9 or Later

	Updating the bootloader
	Getting Rid of Windows Pop-ups
	Making your own UF2
	Installing the bootloader on a fresh/bricked board
	Downloads
	Datasheets
	Firmware
	Schematic & Fabrication Print

