

Introducing Adafruit CLUE

Created by Kattni Rembor

https://learn.adafruit.com/adafruit-clue

Last updated on 2021-12-03 12:34:27 PM EST

©Adafruit Industries Page 1 of 130

7

10

11

12

12

15

15

16

16

17

18

19

19

20

20

21

21

22

23

24

24

25

25

26

26

27

27

27

29

29

29

30

30

30

30

31

31

31

31

32

32

32

32

32

33

33

Table of Contents

Overview

Pinouts

• Microcontroller and QSPI

• Display

• Sensors

• USB and Battery

• Buttons

• STEMMA QT

• LEDs

• GPIO and Power Pads

• Edge Connector

• Debug Pads

Powering Your CLUE

• micro:bit Power

• CLUE Power

HELP! Accel/Gyro Not Working?

Arduino Support Setup

• 1. BSP Installation

• 2. LINUX ONLY: adafruit-nrfutil Tool Installation

• 3. Update the bootloader (nRF52832 ONLY)

• Advanced Option: Manually Install the BSP via 'git'

Arduino Board Testing

• 1. Select the Board Target

• 2. Select the USB CDC Serial Port

• Download & Install CP2104 Driver (nRF52832)

• Download & Install Adafruit Driver (nRF52840 Windows)

• 3. Update the bootloader (nRF52832 Feather Only)

• 4. Run a Test Sketch

Arcada Libraries

• Install Libraries

• Adafruit Arcada

• If you aren't running Arduino IDE 1.8.10 or later, you'll need to install all of the following!

• Adafruit NeoPixel

• Adafruit FreeTouch

• Adafruit Touchscreen

• Adafruit SPIFlash

• Adafruit Zero DMA

• Adafruit GFX

• Adafruit ST7735

• Adafruit ILI9341

• Adafruit LIS3DH

• Adafruit Sensor

• Adafruit ImageReader

• ArduinoJson

• Adafruit ZeroTimer

• Adafruit TinyUSB

©Adafruit Industries Page 2 of 130

33

33

34

34

34

35

35

35

35

35

35

36

36

36

36

36

36

37

37

39

39

39

40

40

42

42

44

44

45

46

46

47

47

48

50

51

52

52

53

54

54

55

55

• Adafruit WavePlayer

• SdFat (Adafruit Fork)

• Audio - Adafruit Fork

Sensor Libraries

• Adafruit Sensor Lab

• If you aren't running Arduino IDE 1.8.10 or later, you'll need to install all of the following!

• Adafruit Unified Sensor

• Adafruit ADXL343

• Adafruit APDS9660

• Adafruit BMP280

• Adafruit BME280

• Adafruit DPS310

• Adafruit LIS2MDL

• Adafruit LIS3MDL

• Adafruit LSM6DS

• Adafruit MSA301

• Adafruit SHT31

• Adafruit AHRS & Adafruit Sensor Calibration

Arduino Test

Animated GIF Player

Arduino Bluefruit nRF52 API

Arduino BLE Examples

CircuitPython on CLUE

• Set up CircuitPython Quick Start!

CLUE CircuitPython Libraries

• Installing CircuitPython Libraries on your CLUE

Getting Started with BLE and CircuitPython

• Guides

Installing the Mu Editor

• Download and Install Mu

• Starting Up Mu

• Using Mu

Creating and Editing Code

• Creating Code

• Editing Code

• Back to Editing Code...

• Naming Your Program File

Connecting to the Serial Console

• Are you using Mu?

• Serial Console Issues or Delays on Linux

• Setting Permissions on Linux

• Using Something Else?

Interacting with the Serial Console

©Adafruit Industries Page 3 of 130

58

59

60

62

63

64

64

65

65

66

67

67

67

70

71

72

72

72

73

74

75

76

77

77

78

79

80

80

80

82

84

84

86

90

91

92

93

96

97

97

97

99

99

99

100

100

101

102

The REPL

• Entering the REPL

• Interacting with the REPL

• Returning to the Serial Console

CircuitPython Libraries

• The Adafruit CircuitPython Library Bundle

• Downloading the Adafruit CircuitPython Library Bundle

• The CircuitPython Community Library Bundle

• Downloading the CircuitPython Community Library Bundle

• Understanding the Bundle

• Example Files

• Copying Libraries to Your Board

• Understanding Which Libraries to Install

• Example: ImportError Due to Missing Library

• Library Install on Non-Express Boards

• Updating CircuitPython Libraries and Examples

CircuitPython Pins and Modules

• CircuitPython Pins

• import board

• I2C, SPI, and UART

• What Are All the Available Names?

• Microcontroller Pin Names

• CircuitPython Built-In Modules

Advanced Serial Console on Mac

• What's the Port?

• Connect with screen

Advanced Serial Console on Windows

• Windows 7 and 8.1

• What's the COM?

• Install Putty

Welcome to the Community!

• Adafruit Discord

• CircuitPython.org

• Adafruit GitHub

• Adafruit Forums

• Read the Docs

Frequently Asked Questions

Troubleshooting

• Always Run the Latest Version of CircuitPython and Libraries

• I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

• Bootloader (boardnameBOOT) Drive Not Present

• Windows Explorer Locks Up When Accessing boardnameBOOT Drive

• Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied

• CIRCUITPY Drive Does Not Appear

• Device Errors or Problems on Windows

• Serial Console in Mu Not Displaying Anything

• CircuitPython RGB Status Light

• CircuitPython 7.0.0 and Later

©Adafruit Industries Page 4 of 130

103

104

104

105

107

107

107

109

110

110

111

111

111

111

112

113

114

114

115

115

116

118

118

118

118

120

123

125

125

126

127

128

129

130

• CircuitPython 6.3.0 and earlier

• Serial console showing ValueError: Incompatible .mpy file

• CIRCUITPY Drive Issues

• Safe Mode

• To erase CIRCUITPY: storage.erase_filesystem()

• Erase CIRCUITPY Without Access to the REPL

• For the specific boards listed below:

• For SAMD21 non-Express boards that have a UF2 bootloader:

• For SAMD21 non-Express boards that do not have a UF2 bootloader:

• Running Out of File Space on SAMD21 Non-Express Boards

• Delete something!

• Use tabs

• On MacOS?

• Prevent & Remove MacOS Hidden Files

• Copy Files on MacOS Without Creating Hidden Files

• Other MacOS Space-Saving Tips

• Device Locked Up or Boot Looping

"Uninstalling" CircuitPython

• Backup Your Code

• Moving Circuit Playground Express to MakeCode

• Moving to Arduino

CircuitPython Essentials

Clue Library Documentation

CLUE CircuitPython Demos

CLUE Spirit Level

CLUE Temperature and Humidity Monitor

CLUE Height Calculator

CLUE Slideshow

• Blinka Bitmaps

• CircuitPython Libraries

• CLUE Slideshow Example

Downloads

• Schematic

• Fab Print

©Adafruit Industries Page 5 of 130

©Adafruit Industries Page 6 of 130

Overview

Do you feel like you just don't have a CLUE? Well, we can help with that - get a CLUE

here at Adafruit by picking up this sensor-packed development board. We wanted to

build some projects that have a small screen and a lot of sensors. To make it

compatible with existing projects, we made it the same shape and size as the BBC

micro:bit (https://adafru.it/IHB) and with the same edge-connector on the bottom with

5 big pads so it will fit into your existing robot kit or 'bit add-on.

©Adafruit Industries Page 7 of 130

https://www.adafruit.com/category/932
https://www.adafruit.com/category/932

While the CLUE looks a bit like a 'bit it has totally redesigned-from-scratch

technology:

Nordic nRF52840 Bluetooth LE processor - 1 MB of Flash, 256KB RAM, 64 MHz

Cortex M4 processor

1.3″ 240×240 Color IPS TFT display for high resolution text and graphics

Power it from any 3-6V battery source (internal regulator and protection diodes)

Two A / B user buttons and one reset button

Tons of sensors!

ST Micro series 9-DoF motion - LSM6DS33 Accel/Gyro (https://adafru.it/IfN)

+ LIS3MDL (https://adafru.it/Iqa) magnetometer (https://adafru.it/IHC)

APDS9960 Proximity, Light, Color, and Gesture Sensor (https://adafru.it/

IHD)

PDM Microphone sound sensor (https://adafru.it/FB0)

SHT Humidity (https://adafru.it/IHE)

BMP280 temperature and barometric pressure/altitude (https://adafru.it/

ufr)

RGB NeoPixel indicator LED

2 MB internal flash storage for datalogging, images, fonts or CircuitPython code

Buzzer/speaker for playing tones and beeps

Two bright white LEDs in front for illumination / color sensing.

Qwiic / STEMMA QT connector for adding more sensors, motor controllers, or

displays over I2C. You can plug in GROVE I2C sensors by using an adapter

cable (https://adafru.it/IDk).

Programmable with Arduino IDE or CircuitPython

•

•

•

•

•

◦

◦

◦

◦

◦

•

•

•

•

•

•

©Adafruit Industries Page 8 of 130

https://www.adafruit.com/product/4480
https://www.adafruit.com/product/4479
http://www.adafruit.com/product/4479
https://www.adafruit.com/product/3595
https://www.adafruit.com/product/3492
https://www.adafruit.com/product/4099
https://www.adafruit.com/product/2651
https://www.adafruit.com/product/4424
https://www.adafruit.com/product/4424

Please note that at this time there is no MakeCode or Scratch support for the

nRF52840 chipset (of course, we’d love to see MakeCode but there is no ETA when it

may be added). While the CLUE is the same outline and we did our best to make the

edge-connector pins match up, most cases for the 'bit wont fit the CLUE, and code

may not be immediately compatible without adjustment, especially since only Arduino

and CircuitPython are supported at this time.

The CLUE is designed for projects that use a ton of sensors - and they're all built in!

So you can start exploring your world, measuring, logging and learning. You can

transmit data over Bluetooth to a computer or mobile device for data plotting and

logging, or save it to the built in storage.

©Adafruit Industries Page 9 of 130

Pinouts

There's all kinds of features packed into CLUE. Let's take a look!

Thanks to Andrew Tribble, here's a lovely pinout diagram of the edge-connector:

©Adafruit Industries Page 10 of 130

Microcontroller and QSPI

Nordic nRF52840 Bluetooth LE

processor - 1 MB of Flash, 256KB

RAM, 64 MHz Cortex M4 processor.

QSPI flash - 2MB of internal flash

storage for datalogging, images,

fonts or CircuitPython code.

•

•

©Adafruit Industries Page 11 of 130

https://learn.adafruit.com//assets/87861
https://learn.adafruit.com//assets/87861
https://learn.adafruit.com//assets/87862
https://learn.adafruit.com//assets/87862

Display

1.3″ 240×240 Color IPS TFT display

- Display high resolution text and

graphics. The cable goes through a

slot in the board to the back to the

display connector.

The front of the TFT has a controller chip

embedded in the connector cable (you

can see it as a thin rectangle to the left of

the display). This chip is light sensitive,

so if you use a xenon strobe you may

disable the display. If you need to use the

CLUE In a strobe/very-high-brightness

setup, cover up the chip with a strip of

black electrical tape

Sensors

Gyro + Accel: LSM6DS33 - This

sensor is a 6-DoF IMU

accelerometer + gyroscope. The 3-

axis accelerometer, can tell you

which direction is down towards the

Earth (by measuring gravity) or how

fast the CLUE is accelerating in 3D

space. The 3-axis gyroscope that

can measure spin and twist. Pair

with a triple-axis magnetometer to

create a 9-DoF inertial

measurement unit that can detect

its orientation in real-space thanks

to Earth's stable magnetic field.

Sensor is I2C on standard pins.

•

•

©Adafruit Industries Page 12 of 130

https://learn.adafruit.com//assets/87859
https://learn.adafruit.com//assets/87859
https://learn.adafruit.com//assets/87860
https://learn.adafruit.com//assets/87860
https://learn.adafruit.com//assets/87852
https://learn.adafruit.com//assets/87852

Magnetometer: LIS3MDL - Sense

the magnetic fields that surround us

with this handy triple-axis

magnetometer (compass) module.

Magnetometers can sense where

the strongest magnetic force is

coming from, generally used to

detect magnetic north, but can also

be used for measuring magnetic

fields. This sensor tends to be

paired with a 6-DoF (degree of

freedom) accelerometer/gyroscope

to create a 9-DoF inertial

measurement unit that can detect

its orientation in real-space thanks

to Earth's stable magnetic field.

Sensor is I2C on standard pins.

Light + Gesture + Proximity:

APDS9960 - Detect simple gestures

(left to right, right to left, up to

down, down to up are currently

supported), return the amount of

red, blue, green, and clear light, or

return how close an object is to the

front of the sensor. This sensor has

an integrated IR LED and driver,

along with four directional

photodiodes that sense reflected IR

energy from the LED. Since there

are four IR sensors, you can

measure the changes in light

reflectance at each of the cardinal

locations over time and turn those

changes into gestures. Sensor is

I2C on standard pins.

•

•

©Adafruit Industries Page 13 of 130

https://learn.adafruit.com//assets/87853
https://learn.adafruit.com//assets/87853
https://learn.adafruit.com//assets/87854
https://learn.adafruit.com//assets/87854

PDM Microphone sound sensor:

MP34DT01-M - PDM sound sensor.

In CircuitPython,

board.MICROPHONE_DATA is PDM

data, and

board.MICROPHONE_CLOCK is PDM

clock. In Arduino, D35 is PDM data,

and D36 is PDM clock.

Speaker/buzzer - This tiny buzzer is

good for playing back beeps and

tones. It's not suitable for playing

back audio files. Addressable in

CircuitPython as board.SPEAKER ,

and in Arduino as D46 .

Humidity: SHT30 - This sensor has

an excellent ±2% relative humidity

and ±0.5°C accuracy for most uses.

Sensor is I2C on standard pins.

Temp + Pressure: BMP280 - This

sensor is a precision sensing

solution for measuring barometric

pressure with ±1 hPa absolute

accuraccy, and temperature with

±1.0°C accuracy. Because pressure

changes with altitude, and the

pressure measurements are so

good, you can also use it as an

altimeter with ±1 meter accuracy. It

has a a low altitude noise of 0.25m

and a fast conversion time. Sensor

is I2C on standard pins.

•

•

•

•

©Adafruit Industries Page 14 of 130

https://learn.adafruit.com//assets/87855
https://learn.adafruit.com//assets/87855
https://learn.adafruit.com//assets/87856
https://learn.adafruit.com//assets/87856
https://learn.adafruit.com//assets/87857
https://learn.adafruit.com//assets/87857

USB and Battery

USB Micro - This USB port is used

for programming and/or powering

the CLUE. It is a standard USB

Micro connector.

Battery - 2-pin JST PH connector for

a battery. Power the CLUE from any

3V-6V power source, as it has

internal regulator and protection

diodes.

Buttons

A and B buttons - The CLUE has

two user-programmable buttons on

the front, labeled A and B. Use

them as inputs to control your code.

These are unconnected when not

pressed, and connected to GND

when pressed, so they read LOW.

Set the pins to use an internal pull-

UP when reading these pins so they

will read HIGH when not pressed.

Buttons can be addressed in

CircuitPython using

board.BUTTON_A and

board.BUTTON_B , and in Arduino

as D5 (left button) and D11 (right

button).

Like the micro:bit, the CLUE does not have built in LiPoly battery charging. This is

for your safety so you can use Alkaline or NiMH batteries without damaging

them! You can use LiPoly batteries but you will need an external charger

•

•

•

©Adafruit Industries Page 15 of 130

https://learn.adafruit.com//assets/87863
https://learn.adafruit.com//assets/87863
https://learn.adafruit.com//assets/87864
https://learn.adafruit.com//assets/87864

Reset button - This button resets

the board. Press once to reset.

Quickly press twice to enter the

bootloader.

STEMMA QT

Qwiic / STEMMA QT connector -

Use to add more sensors, motor

controllers, or displays over I2C.

You can plug in GROVE I2C sensors

by using an adapter cable (https://

adafru.it/IDk).

LEDs

NeoPixel - The addressable RGB

NeoPixel LED is used as a status

LED by the bootloader and

CircuitPython, but is also

controllable using code. Control it

using board.NEOPIXEL in

CircuitPython and D18 in Arduino.

Status LED - This little red LED

works as a status LED in the

bootloader. Otherwise, it is

controllable using code by

addressing board.D17 in

CircuitPython, and D17 in Arduino.

•

•

•

•

©Adafruit Industries Page 16 of 130

https://learn.adafruit.com//assets/87865
https://learn.adafruit.com//assets/87865
https://learn.adafruit.com//assets/87866
https://learn.adafruit.com//assets/87866
https://www.adafruit.com/product/4424
https://www.adafruit.com/product/4424
https://learn.adafruit.com//assets/87867
https://learn.adafruit.com//assets/87867

Bright white LEDs - On the front of

the board are two bright white LEDs

for illumination and color sensing.

Control them in CircuitPython using

board.WHITE_LEDS , and in

Arduino using D43 .

GPIO and Power Pads

Pads 0, 1 and 2 - These pads are

used for connecting external

sensors etc, typically using alligator

clips. They also work as inputs

using capacitive touch. In

CircuitPython they are board.D0 ,

board.D1 , and board.D2 . In

Arduino, they are D0 , D1 and D2 .

3V and GND - These are the power

and ground pads used when

connecting external sensors etc.

typically using alligator clips.

•

•

•

©Adafruit Industries Page 17 of 130

https://learn.adafruit.com//assets/87868
https://learn.adafruit.com//assets/87868
https://learn.adafruit.com//assets/87869
https://learn.adafruit.com//assets/87869
https://learn.adafruit.com//assets/87870
https://learn.adafruit.com//assets/87870

Edge Connector

Micro:Bit compatible edge

connector - This is the Micro:Bit

compatible edge connector, used to

break out all of the other features of

this microcontroller. Compatible

with other Micro:Bit-compatible

hardware. While the CLUE is the

same outline and we did our best to

make the edge-connector pins

match up, code may not be

immediately compatible without

adjustment, especially since only

Arduino and CircuitPython are

supported at this time.

Here's the pinout diagram for the micro:bit - the CLUE has the same pinout with some

extras!

The I2C pins are on on the same P19/P20 (we like to use D19/D20 naming)

The SPI pins are on on the same P13-P15 (we like to use D13-D15 naming)

There are analog pins on P0 (Arduino A2), P1 (Arduino A3), P2 (Arduino A4),

P3 (Arduino A5), P4 (Arduino A6), P10 (Arduino A7) just like the micro:bit

There are additional analog pins on D12 (Arduino A0) and P16 (Arduino A1)

Button A and B are on the same P5 and P11 pins

Since we don't have an LED matrix, you can use P3, P4, P6, P7, P9, P10, P11

without worrying about conflicting with an LED grid

•

•

•

•

•

•

•

©Adafruit Industries Page 18 of 130

https://learn.adafruit.com//assets/87871
https://learn.adafruit.com//assets/87871

Debug Pads

On the bottom of the board are three

pads, one near the reset button, and two

to the right of the display cable. The pad

near the reset button is reset. Of the two

pads near the display cable, the top is

SWDIO and on the bottom is SWCLK. On

the off chance you want to reprogram

your CLUE or debug it using a debug/

programmer, you will need to solder/

connect to these pads.

Powering Your CLUE

©Adafruit Industries Page 19 of 130

https://learn.adafruit.com//assets/100773
https://learn.adafruit.com//assets/100773

To use your CLUE board you'll have to provide it with a power source - and this is

where CLUE is different than the micro:bit so we want to make it super clear to avoid

confusion.

micro:bit Power

The BBC micro:bit can be powered from USB or it can be powered from a JST 2-PH

battery connector in the corner. When powering from USB, use any USB power bank

or port. When powering from the battery connector, there is no regulator and the

voltage cannot be more than 3.3 volts. For that reason, the micro:bit folks warn users

to:

Only use 2 x AA or AAA battery holders with alkaline batteries for 2 x 1.5V = 3V

power.

Can't use:

You can't use 3 x AA because that will be 3 x 1.5 = 4.5 Volts - too much!

You can't use 2 x AA NiMH rechargeable because that would be 2 x 1.2 = 2.4 - to

o low!

You can't use 1 x LiPoly battery - when charged these provide 4.2V - too much!

CLUE Power

The Adafruit CLUE can also be powered from USB or it can be powered from a JST 2-

PH battery connector in the corner. When powering from USB, use any USB power

bank or port. When powering from the battery connector, you can use any battery

from 3 to 6V because we have a regulator to safely bring the voltage to a safe level.

Because of this, you can use:

3 x AA or AAA battery holders with alkaline or NiMH batteries for 3 x 1.2~1.5V =

3.6~4.5V power - recommended!

1 x LiPoly or LiIon battery. Just remember that the CLUE does not have built in

battery charging so you will need to charge separately!

•

•

•

•

•

•

©Adafruit Industries Page 20 of 130

Not recommended (you can use them, we just don't suggest it)

2 x AA or AAA battery holders with alkaline batteries for 2 x 1.5V = 3V power.

Not recommended, because the voltage will drop as the batteries die and you

might get poor behavior.

4 x AA or AAA battery holders with NiMH batteries only! We think the voltage is

a little high if you were to use Alkalines, and you may forget to use

rechargeable, so we don't recommend it.

HELP! Accel/Gyro Not Working?

If you're getting 0's from the LSM6DS33 (Accelerometer/Gyro) - it's not broken! Some

(not all) LSM's would lock up when we perform a firmware reset a certain way, which

our original test code would do by default.

To fix, visit

https://learn.adafruit.com/adafruit-clue/arduino-test (https://adafru.it/Mcw)

to download the new UF2 and install it onto your CLUE (double click to enter BOOT

mode, then drag the new UF2 over to the disk drive)

Update to the latest version of the Arduino/CircuitPython LSM6DS33 libraries to fix

the bug.

Arduino Support Setup

You can install the Adafruit Bluefruit nRF52 BSP (Board Support Package) in two

steps:

•

•

nRF52 support requires at least Arduino IDE version 1.8.6! Please make sure you

have an up to date version before proceeding with this guide!

Please consult the FAQ section at the bottom of this page if you run into any

problems installing or using this BSP!

©Adafruit Industries Page 21 of 130

https://learn.adafruit.com/adafruit-clue/arduino-test

1. BSP Installation

Recommended: Installing the BSP via the Board Manager

Download and install the Arduino IDE (https://adafru.it/fvm) (At least v1.8)

Start the Arduino IDE

Go into Preferences

Add https://www.adafruit.com/package_adafruit_index.json as an 'Ad

ditional Board Manager URL' (see image below)

Restart the Arduino IDE

Open the Boards Manager option from the Tools -> Board menu and install 'Ada

fruit nRF52 by Adafruit' (see image below)

It will take up to a few minutes to finish installing the cross-compiling toolchain and

tools associated with this BSP.

The delay during the installation stage shown in the image below is normal, please be

patient and let the installation terminate normally:

•

•

•

•

•

•

©Adafruit Industries Page 22 of 130

https://www.arduino.cc/en/Main/Software

Once the BSP is installed, select

Adafruit Bluefruit nRF52832 Feather (for the nRF52 Feather)

Adafruit Bluefruit nRF52840 Feather Express (for the nRF52840 Feather)

Adafruit ItsyBitsy nRF52840 (for the Itsy '850)

Adafruit Circuit Playground Bluefruit (for the CPB)

etc...

from the Tools -> Board menu, which will update your system config to use the right

compiler and settings for the nRF52:

2. LINUX ONLY: adafruit-nrfutil Tool

Installation

adafruit-nrfutil (https://adafru.it/Cau) is a modified version of Nordic's nrfutil (https://

adafru.it/vaG), which is used to flash boards using the built in serial bootloader. It is

originally written for python2, but have been migrated to python3 and renamed to ad

afruit-nrfutil since BSP version 0.8.5.

Install python3 if it is not installed in your system already

$ sudo apt-get install python3

Then run the following command to install the tool from PyPi

•

•

•

•

•

This step is only required on Linux, pre-built binaries of adafruit-nrfutil for

Windows and MacOS are already included in the BSP. That should work out of

the box for most setups.

©Adafruit Industries Page 23 of 130

https://github.com/adafruit/Adafruit_nRF52_nrfutil
https://github.com/NordicSemiconductor/pc-nrfutil

$ pip3 install --user adafruit-nrfutil

Add pip3 installation dir to your PATH if it is not added already. Make sure adafruit-

nrfutil can be executed in terminal by running

$ adafruit-nrfutil version

adafruit-nrfutil version 0.5.3.post12

3. Update the bootloader (nRF52832 ONLY)

To keep up with Nordic's SoftDevice advances, you will likely need to update your

bootloader if you are using the original nRF52832 based Bluefruit nRF52 Feather

boards.

Follow this link for instructions on how to do that

Update the nRF52832 Bootloader

https://adafru.it/Dsx

Advanced Option: Manually Install the BSP

via 'git'

If you wish to do any development against the core codebase (generate pull requests,

etc.), you can also optionally install the Adafruit nRF52 BSP manually using 'git', as

decribed below:

Adafruit nRF52 BSP via git (for core development and PRs only)

Install BSP via Board Manager as above to install compiler & tools.

Delete the core folder nrf52 installed by Board Manager in Adruino15,

depending on your OS. It could be

macOS: ~/Library/Arduino15/packages/adafruit/hardware/nrf52

Linux: ~/.arduino15/packages/adafruit/hardware/nrf52

Windows: %APPDATA%

\Local\Arduino15\packages\adafruit\hardware\nrf52

This step ISN'T required for the newer nRF52840 Feather Express, which has a

different bootloader entirely!

1.

2.

©Adafruit Industries Page 24 of 130

https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide/updating-the-bootloader

Go to the sketchbook folder on your command line, which should be one of the

following:

macOS: ~/Documents/Arduino

Linux: ~/Arduino

Windows: ~/Documents/Arduino

Create a folder named hardware/Adafruit , if it does not exist, and change

directories into it.

Clone the Adafruit_nRF52_Arduino (https://adafru.it/vaF) repo in the folder

described in step 2:

git clone --recurse-submodules git@github.com:adafruit/

Adafruit_nRF52_Arduino.git

This should result in a final folder name like ~/Documents/Arduino/hardware

/Adafruit/Adafruit_nRF52_Arduino (macOS).

Restart the Arduino IDE

Arduino Board Testing

Once you have the Bluefruit nRF52 BSP setup on your system, you need to select the

appropriate board, which will determine the compiler and expose some new menus

options:

1. Select the Board Target

Go to the Tools menu

Select Tools > Board > Adafruit Bluefruit nRF52 Feather for nRF52832-based

boards

Select Tools > Board > Adafruit Bluefruit nRF52840 Feather Express for nRF528

40-based boards

Select Tools > Board > Adafruit CLUE for the Adafruit CLUE

3.

4.

5.

6.

7.

•

•

•

•

©Adafruit Industries Page 25 of 130

https://github.com/adafruit/Adafruit_nRF52_Arduino

2. Select the USB CDC Serial Port

Finally, you need to set the serial port used by Serial Monitor and the serial

bootloader:

Go to Tools > Port and select the appropriate device

Download & Install CP2104 Driver (nRF52832)

For Feather nRF52832 If you don't see the SiLabs device listed, you may need to

install the SiLabs CP2104 driver (https://adafru.it/yfA) on your system.

On MacOS If you see this dialog message while installing driver

On MacOS If you see this dialog

message while installing driver, System

Extension Blocked

And cannot find the serial port of

CP2104, it is highly possible that driver is

blocked.

To enable it go to System Preferences ->

Security & Privacy and click allow if you

see Silab in the developer name.

•

©Adafruit Industries Page 26 of 130

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://learn.adafruit.com//assets/55243
https://learn.adafruit.com//assets/55243
https://learn.adafruit.com//assets/55242
https://learn.adafruit.com//assets/55242

Download & Install Adafruit Driver (nRF52840 Windows)

For Feather nRF52840, If you are using Windows, you will need to follows Windows

Driver Installation (https://adafru.it/D0H) to download and install driver.

3. Update the bootloader (nRF52832

Feather Only)

To keep up with Nordic's SoftDevice advances, you will likely need to update your

bootloader

Follow this link for instructions on how to do that

Update the Bootloader

https://adafru.it/Dsx

4. Run a Test Sketch

At this point, you should be able to run a test sketch from the Examples folder, or just

flash the following blinky code from the Arduino IDE:

void setup() {

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop() {

 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

This will blink the red LED beside the USB port on the Feather, or the red LED labeled

"LED" by the corner of the USB connector on the CLUE.

This step is only necessary on the nRF52832-based devices, NOT on the newer

nRF52840 Feather Express.

©Adafruit Industries Page 27 of 130

https://learn.adafruit.com/adafruit-arduino-ide-setup/windows-driver-installation%C2%A0
https://learn.adafruit.com/adafruit-arduino-ide-setup/windows-driver-installation%C2%A0
https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide/updating-the-bootloader

If Arduino failed to upload sketch to the Feather

If you get this error:

Timed out waiting for acknowledgement from device.

Failed to upgrade target. Error is: No data received on serial

port. Not able to proceed.

Traceback (most recent call last):

 File "nordicsemi__main__.py", line 294, in serial

 File "nordicsemi\dfu\dfu.py", line 235, in dfu_send_images

 File "nordicsemi\dfu\dfu.py", line 203, in _dfu_send_image

 File "nordicsemi\dfu\dfu_transport_serial.py", line 155, in

send_init_packet

 File "nordicsemi\dfu\dfu_transport_serial.py", line 243, in

send_packet

 File "nordicsemi\dfu\dfu_transport_serial.py", line 282, in

get_ack_nr

nordicsemi.exceptions.NordicSemiException: No data received on

serial port. Not able to proceed.

This is probably caused by the bootloader version mismatched on your feather and

installed BSP. Due to the difference in flash layout (more details (https://adafru.it/

Dsy)) and Softdevice API (which is bundled with bootloader), sketch built with

selected bootloader can only upload to board having the same version. In short,

you need to upgrade/burn bootloader to match on your Feather, follow

above Update The Bootloader (https://adafru.it/Dsx) guide

It only has to be done once to update your Feather

On Linux I'm getting 'arm-none-eabi-g++: no such file or

directory', even though 'arm-none-eabi-g++' exists in the

path specified. What should I do?

This is probably caused by a conflict between 32-bit and 64-bit versions of the

compiler, libc and the IDE. The compiler uses 32-bit binaries, so you also need to

have a 32-bit version of libc installed on your system (details (https://adafru.it/vnE)).

Try running the following commands from the command line to resolve this:

sudo dpkg --add-architecture i386

1.

©Adafruit Industries Page 28 of 130

https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide/hathach-memory-map
https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide/updating-the-bootloader
http://forum.arduino.cc/index.php?topic=221979.0

sudo apt-get update

sudo apt-get install libc6:i386

Arcada Libraries

OK now that you have Arduino IDE set up, drivers installed if necessary and you've

practiced uploading code, you can start installing all the Libraries we'll be using to

program it.

There's a lot of libraries!

Install Libraries

Open up the library manager...

And install the following libraries:

Adafruit Arcada

This library generalizes the hardware for you so you can read the joystick, draw to the

display, read files, etc. without having to worry about the underlying methods

2.

3.

©Adafruit Industries Page 29 of 130

If you aren't running Arduino IDE 1.8.10 or later, you'll need

to install all of the following!

Adafruit NeoPixel

This will let you light up the status LEDs on the front/back

Adafruit FreeTouch

This is the open source version of QTouch for SAMD21 boards

Adafruit Touchscreen

Used by Adafruit Arcada for touchscreen input (required even if your Arcada board

does not have a touchscreen)

If you use Arduino 1.8.10 or later, the IDE will automagically install all the libraries

you need to run all the Arcada demos when you install Arcada. We strongly

recommend using the latest IDE so you don't miss one of the libraries!

©Adafruit Industries Page 30 of 130

Adafruit SPIFlash

This will let you read/write to the onboard FLASH memory with super-fast QSPI

support

Adafruit Zero DMA

This is used by the Graphics Library if you choose to use DMA

Adafruit GFX

This is the graphics library used to draw to the screen

If using an older (pre-1.8.10) Arduino IDE, locate and install Adafruit_BusIO (newer

versions do this one automatically).

Adafruit ST7735

The display on the PyBadge/PyGamer & other Arcada boards

©Adafruit Industries Page 31 of 130

Adafruit ILI9341

The display on the PyPortal & other Arcada boards

Adafruit LIS3DH

For reading the accelerometer data, required even if one is not on the board

Adafruit Sensor

Needed by the LIS3DH Library, required even if one is not on the board

Adafruit ImageReader

For reading bitmaps from SPI Flash or SD and displaying

ArduinoJson

We use this library to read and write configuration files

©Adafruit Industries Page 32 of 130

Adafruit ZeroTimer

We use this library to easily set timers and callbacks on the SAMD processors

Adafruit TinyUSB

This lets us do cool stuff with USB like show up as a Keyboard or Disk Drive

Adafruit WavePlayer

Helps us play .WAV sound files.

SdFat (Adafruit Fork)

The Adafruit fork of the really excellent SD card library that gives a lot more capability

than the default SD library

©Adafruit Industries Page 33 of 130

Audio - Adafruit Fork

Our fork of the Audio library provides a toolkit for building streaming audio projects.

Sensor Libraries

To read and manage all the sensors on your CLUE board, we will need libraries to

control each and every one of them.

Use the library manager to install them.

Adafruit Sensor Lab

This library generalizes sensor reading for you so you can search for and use various

sensors without knowing the specifics - great for starting out with sensor readings in

Arduino IDE

©Adafruit Industries Page 34 of 130

If you aren't running Arduino IDE 1.8.10 or later, you'll need

to install all of the following!

Search for and install the following:

Adafruit Unified Sensor

Adafruit ADXL343

Adafruit APDS9660

Adafruit BMP280

Adafruit BME280

If you use Arduino 1.8.10 or later, the IDE will automagically install all the libraries

you need to run all the sensor lab demos when you install Sensor Lab. We

strongly recommend using the latest IDE so you don't miss one of the libraries!

©Adafruit Industries Page 35 of 130

Adafruit DPS310

Adafruit LIS2MDL

Adafruit LIS3MDL

Adafruit LSM6DS

Adafruit MSA301

Adafruit SHT31

©Adafruit Industries Page 36 of 130

Adafruit AHRS & Adafruit Sensor Calibration

Arduino Test

Once you've got the IDE installed and both Arcada and SensorLab libraries in place

you can compile and run the test sketch. This will check all the hardware, and display

it on the screen, its sort of a universal test because every part is checked. It's also a

great reference if you want to know how to read the sensors or buttons, or control the

screen.

If you don't want to compile the example, and want to just get to the hardware test,

download CLUE_TEST.UF2 button here to download, and install it by double-clicking

until you see a BOOT disk appear, then drag the UF2 over

CLUE_TEST.UF2

https://adafru.it/Mcx

You can find it as an example in the Adafruit Arcada library (check the previous pages

for all the libraries you need to install!)

The test code

Checks the QSPI flash chip initialised correctly, and displays the manufacturer/

device ID if so

1.

©Adafruit Industries Page 37 of 130

https://cdn-learn.adafruit.com/assets/assets/000/093/068/original/CLUE_TEST.UF2?1594484316

Checks if the QPI flash has a filesystem on it (if not, try loading CircuitPython

which will create a filesystem)

Tests if all the sensors are found. You should see APDS9960 LSM6DS33

LISS3MDL SHT30 and BMP280 all in green text. If any are in red text, that

means there was difficulty detecing the sensor. Try disconnecting it from power

completely, waiting a few seconds, and plugging it back in.

Print the ambient temperature from the BMP280

Print the barometric pressure from the BMP280

Print the humidity from the SHT30

Print the light level from the APDS9960

Print the accelerometer output from the LSM6DS33

Print the gyroscope output from the LSM6DS33

Print the magnetometer output from the LIS3MDL

Print the audio level detected by the microphone (you can try blowing on the

mic to see the number increase)

When the left button is held down, you will hear a beep to test the piezo

When the right button is held down, the front white LEDs will light up

The NeoPixel on the back will display colors in the rainbow

The red LED will pulse in and out.

To test Arcada's callback functionality, we pulse pin #13 red LED so you'll see it ramp

up 4 times a second.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

©Adafruit Industries Page 38 of 130

Animated GIF Player

The little 240x240 screen on the CLUE can be used to display simple animated GIFs,

a great way to make a project from an existing GIF or video!

We have a full guide on the animated GIF code here (https://adafru.it/EkO), its an

Arduino sketch (CircuitPython does not yet have the ability to play animated GIFs).

Here's the CLUE quickstart:

Make sure you have a 'filesystem' on the QSPI flash. If you aren't sure, simply

load CircuitPython once, that will create the 2 MB disk drive (https://adafru.it/

Jab).

Load the GIF player UF2 from this button:

CLUE_gifplayer.UF2

https://adafru.it/Jac

On the CIRCUITPY disk drive that appears, create a gifs folder, and drag the two

demo GIFs from this zip into the CIRCUITPY/gifs folder.

240x240_demo_gifs.zip

https://adafru.it/Jad

Use the A and B buttons to go forward/back through the collection of gifs in the

folder. For more info on how to configure and customize behavior - check the guide! (

https://adafru.it/EkO)

Arduino Bluefruit nRF52 API

Arduino Bluefruit nRF52 API (https://adafru.it/IIa)

Arduino BLE Examples

Arduino BLE Examples (https://adafru.it/wsF)

•

•

•

©Adafruit Industries Page 39 of 130

https://learn.adafruit.com/pyportal-animated-gif-display
https://learn.adafruit.com/adafruit-clue/circuitpython
https://learn.adafruit.com/adafruit-clue/circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/088/447/original/CLUE_gifplayer.UF2?1581797275
https://cdn-learn.adafruit.com/assets/assets/000/088/448/original/240x240_demo_gifs.zip?1581797332
https://learn.adafruit.com/pyportal-animated-gif-display
https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide/bluefruit-nrf52-api
https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide/examples

CircuitPython on CLUE

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)

designed to simplify experimentation and education on low-cost microcontrollers. It

makes it easier than ever to get prototyping by requiring no upfront desktop software

downloads. Simply copy and edit files on the CIRCUITPY flash drive to iterate.

The following instructions will show you how to install CircuitPython. If you've already

installed CircuitPython but are looking to update it or reinstall it, the same steps work

for that as well!

Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

Download the latest version of

CircuitPython for CLUE from

circuitpython.org

https://adafru.it/IHF

Click the link above to download the

latest version of CircuitPython for the

CLUE.

Download and save it to your desktop (or

wherever is handy).

©Adafruit Industries Page 40 of 130

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/clue_nrf52840_express/
https://learn.adafruit.com//assets/88037
https://learn.adafruit.com//assets/88037

Plug your CLUE into your computer using

a known-good USB cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Double-click the Reset button on the top

(magenta arrow) on your board, and you

will see the NeoPixel RGB LED (green

arrow) turn green. If it turns red, check

the USB cable, try another USB port, etc.

Note: The little red LED next to the USB

connector will pulse red. That's ok!

If double-clicking doesn't work the first

time, try again. Sometimes it can take a

few tries to get the rhythm right!

You will see a new disk drive appear

called CLUEBOOT.

Drag the adafruit-circuitpython-clue-

etc.uf2 file to CLUEBOOT.

©Adafruit Industries Page 41 of 130

https://learn.adafruit.com//assets/87919
https://learn.adafruit.com//assets/87919
https://learn.adafruit.com//assets/88042
https://learn.adafruit.com//assets/88042
https://learn.adafruit.com//assets/88043
https://learn.adafruit.com//assets/88043

The LED will flash. Then, the CLUEBOOT

drive will disappear and a new disk drive

called CIRCUITPY will appear.

If this is the first time you're installing

CircuitPython or you're doing a

completely fresh install after erasing the

filesystem, you will have two files -

boot_out.txt, and code.py, and one folder

- lib on your CIRCUITPY drive.

If CircuitPython was already installed, the

files present before reloading

CircuitPython should still be present on

your CIRCUITPY drive. Loading

CircuitPython will not create new files if

there was already a CircuitPython

filesystem present.

That's it, you're done! :)

CLUE CircuitPython Libraries

The CLUE is packed full of features like a display and a ton of sensors. Now that you

have CircuitPython installed on your CLUE, you'll need to install a base set of

CircuitPython libraries to use the features of the board with CircuitPython.

Follow these steps to get the necessary libraries installed.

Installing CircuitPython Libraries on your

CLUE

If you do not already have a lib folder on your CIRCUITPY drive, create one now.

Then, download the CircuitPython library bundle that matches your version of

CircuitPython from CircuitPython.org.

Download the latest library bundle

from circuitpython.org

https://adafru.it/ENC

©Adafruit Industries Page 42 of 130

https://learn.adafruit.com//assets/88044
https://learn.adafruit.com//assets/88044
https://circuitpython.org/libraries

The bundle downloads as a .zip file.

Extract the file. Open the resulting folder.

Open the lib folder found within.

Once inside, you'll find a lengthy list of

folders and .mpy files. To install a

CircuitPython library, you drag the file or

folder from the bundle lib folder to the lib

folder on your CIRCUITPY drive.

©Adafruit Industries Page 43 of 130

https://learn.adafruit.com//assets/88148
https://learn.adafruit.com//assets/88148
https://learn.adafruit.com//assets/88147
https://learn.adafruit.com//assets/88147
https://learn.adafruit.com//assets/88146
https://learn.adafruit.com//assets/88146

Copy the following folders and files from

the bundle lib folder to the lib folder on

your CIRCUITPY drive:

adafruit_apds9960

adafruit_bmp280.mpy

adafruit_bus_device

adafruit_clue.mpy

adafruit_display_shapes

adafruit_display_text

adafruit_lis3mdl.mpy

adafruit_lsm6ds

adafruit_register

adafruit_sht31d.mpy

adafruit_slideshow.mpy

neopixel.mpy

Your lib folder should look like the image

on the left. These libraries will let you run

the demos in the CLUE guide.

Getting Started with BLE and CircuitPython

Guides

Getting Started with CircuitPython and Bluetooth Low Energy (https://adafru.it/

FxH) - Get started with CircuitPython, the Adafruit nRF52840 and the Bluefruit

LE Connect app.

BLE Light Switch with Feather nRF52840 and Crickit (https://adafru.it/Ile) -

Control a robot finger from across the room to flip on and off the lights!

Color Remote with Circuit Playground Bluefruit (https://adafru.it/Ije) - Mix

NeoPixels wirelessly with a Bluetooth LE remote control!

MagicLight Bulb Color Mixer with Circuit Playground Bluefruit (https://adafru.it/Ilf)

- Mix colors on a MagicLight Bulb wirelessly with a Bluetooth LE remote control.

Bluetooth Turtle Bot with CircuitPython and Crickit (https://adafru.it/Hcx) - Build

your own Bluetooth controlled turtle rover!

Wooden NeoPixel Xmas Tree (https://adafru.it/IlA) - Cut a Christmas tree of wood

and mount some NeoPixels in the tree to create a festive yuletide light display.

Bluefruit TFT Gizmo ANCS Notifier for iOS (https://adafru.it/IlB) - Circuit

Playground Bluefruit displays your iOS notification icons so you know when

there's fresh activity!

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 44 of 130

https://learn.adafruit.com//assets/95196
https://learn.adafruit.com//assets/95196
https://learn.adafruit.com/circuitpython-nrf52840
https://learn.adafruit.com/bluetooth-light-switch-with-crickit-and-nrf52840
https://learn.adafruit.com/color-remote-with-circuit-playground-bluefruit
https://learn.adafruit.com/magiclight-bulb-mixer
https://learn.adafruit.com/bluetooth-turtle-bot-with-circuitpython-and-crickit
https://learn.adafruit.com/wooden-neopixel-xmas-tree
https://learn.adafruit.com/ancs-gizmo

Bluefruit Playground Hide and Seek (https://adafru.it/HjC) - Use Circuit

Playground Bluefruit devices to create a colorful signal strength-based proximity

detector!

Snow Globe with Circuit Playground Bluefruit (https://adafru.it/HgA) - Make your

own festive (or creatively odd!) snow globe with custom lighting effects and

Bluetooth control.

Bluetooth Controlled NeoPixel Lightbox (https://adafru.it/IlC) - Great for tracing

and writing, this lightbox lets you adjust color and brightness with your phone.

Circuit Playground Bluefruit NeoPixel Animation and Color Remote Control (http

s://adafru.it/HE0) - Control NeoPixel colors and animation remotely over

Bluetooth with the Circuit Playground Bluefruit!

Circuit Playground Bluetooth Cauldron (https://adafru.it/IlD) - Build a Bluetooth

Controlled Light Up Cauldron.

NeoPixel Badge Lanyard with Bluetooth LE (https://adafru.it/IlE) - Light up your

convention badge and control colors with your phone!

CircuitPython BLE Controlled NeoPixel Hat (https://adafru.it/IlF) - Wireless control

NeoPixels on your wearables!

Bluefruit nRF52 Feather Learning Guide (https://adafru.it/Chj) - Get started now

with our most powerful Bluefruit board yet!

CircusPython: Jump through Hoops with CircuitPython Bluetooth LE (https://

adafru.it/Ima) - Blinka jumps through a ring of fire, controlled via Bluetooth LE

and the Bluefruit LE Connect app!

A CircuitPython BLE Remote Control On/Off Switch (https://adafru.it/Imb) - Make

a remote control on/off switch for a computer with CircuitPython and BLE.

NeoPixel Infinity Cube (https://adafru.it/Imc) - Build a 3D printed, Bluetooth

controlled Mirrored Acrylic and NeoPixel Infinity cube.

CircuitPython BLE Crickit Rover (https://adafru.it/Imd) - Purple Robot with Feather

nRF52840 and Crickit plus NeoPixel underlighting!

Circuit Playground Bluefruit Pumpkin with Lights and Sounds (https://adafru.it/

HcB) - Add the Circuit Playground Bluefruit and STEMMA speaker to an

inexpensive plastic pumpkin.

No-Solder LED Disco Tie with Bluetooth (https://adafru.it/Ime) - Build an LED tie

controlled by Bluetooth LE.

Bluetooth Remote Control for the Lego Droid Developer Kit (https://adafru.it/Imf)

- Reinvigorating the Lego Star Wars Droid Developer Kit with an Adafruit

powered remote control using Bluetooth LE.

Installing the Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's

written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 45 of 130

https://learn.adafruit.com/hide-n-seek-bluefruit-ornament
https://learn.adafruit.com/snow-globe-bluefruit-cpb
https://learn.adafruit.com/bluetooth-neopixel-lightbox
https://learn.adafruit.com/circuit-playground-bluefruit-neopixel-animation-and-color-remote-control
https://learn.adafruit.com/cpx-cauldron
https://learn.adafruit.com/bluetooth-neopixel-badge-lanyard
https://learn.adafruit.com/circuitpython-feather-ble-neopixel-hat
https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide
https://learn.adafruit.com/circuspython-jump-through-hoops-with-bluetooth-le
https://learn.adafruit.com/circuitpython-ble-remote-control-on-off
https://learn.adafruit.com/neopixel-infinity-cube
https://learn.adafruit.com/circuitpython-ble-crickit-rover
https://learn.adafruit.com/pumpkin-with-circuit-playground-bluefruit
https://learn.adafruit.com/no-solder-circuit-playground-bluetooth-disco-tie
https://learn.adafruit.com/bluetooth-remote-for-lego-droid

console is built right in so you get immediate feedback from your board's serial

output!

Download and Install Mu

Download Mu from https://

codewith.mu (https://adafru.it/Be6).

Click the Download link for downloads

and installation instructions.

Click Start Here to find a wealth of other

information, including extensive tutorials

and and how-to's.

Starting Up Mu

The first time you start Mu, you will be

prompted to select your 'mode' - you can

always change your mind later. For now

please select CircuitPython!

The current mode is displayed in the

lower right corner of the window, next to

the "gear" icon. If the mode says

"Microbit" or something else, click the

Mode button in the upper left, and then

choose "CircuitPython" in the dialog box

that appears.

Mu is our recommended editor - please use it (unless you are an experienced

coder with a favorite editor already!).

Windows users: due to the nature of MSI installers, please remove old versions of

Mu before installing the latest version.

©Adafruit Industries Page 46 of 130

https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://codewith.mu/
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681

Mu attempts to auto-detect your board

on startup, so if you do not have a

CircuitPython board plugged in with a

CIRCUITPY drive available, Mu will inform

you where it will store any code you save

until you plug in a board.

To avoid this warning, plug in a board

and ensure that the CIRCUITPY drive is

mounted before starting Mu.

Using Mu

You can now explore Mu! The three main sections of the window are labeled below;

the button bar, the text editor, and the serial console / REPL.

Now you're ready to code! Let's keep going...

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and

running. This section covers how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. Adafruit

strongly recommends using Mu! It's designed for CircuitPython, and it's really simple

and easy to use, with a built in serial console!

©Adafruit Industries Page 47 of 130

https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679

If you don't or can't use Mu, there are a number of other editors that work quite well.

The Recommended Editors page (https://adafru.it/Vue) has more details. Otherwise,

make sure you do "Eject" or "Safe Remove" on Windows or "sync" on Linux after

writing a file if you aren't using Mu. (This is not a problem on MacOS.)

Creating Code

Installing CircuitPython generates a

code.py file on your CIRCUITPY drive. To

begin your own program, open your

editor, and load the code.py file from the

CIRCUITPY drive.

If you are using Mu, click the Load button

in the button bar, navigate to the

CIRCUITPY drive, and choose code.py.

Copy and paste the following code into your editor:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

If you're using a KB2040, QT Py or a Trinkey, please download the NeoPixel blink

example (https://adafru.it/UDU).

The KB2040, QT Py and the Trinkeys do not have a built-in little red LED! There is

an addressable RGB NeoPixel LED. The above example will NOT work on the

KB2040, QT Py or the Trinkeys!

The NeoPixel blink example uses the onboard NeoPixel, but the time code is the

same. You can use the linked NeoPixel Blink example to follow along with this

guide page.

©Adafruit Industries Page 48 of 130

https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com//assets/105703
https://learn.adafruit.com//assets/105703
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py

It will look like this. Note that under the

while True: line, the next four lines

begin with four spaces to indent them,

and they're indented exactly the same

amount. All the lines before that have no

spaces before the text.

Save the code.py file on your CIRCUITPY

drive.

The little LED should now be blinking. Once per half-second.

Congratulations, you've just run your first CircuitPython program!

On most boards you'll find a tiny red LED.

On the ItsyBitsy nRF52840, you'll find a tiny blue LED.

On QT Py M0, QT Py RP2040, and the Trinkey series, you will find only an RGB

NeoPixel LED.

©Adafruit Industries Page 49 of 130

https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105705

Editing Code

To edit code, open the code.py file on

your CIRCUITPY drive into your editor.

Make the desired changes to your code.

Save the file. That's it!

Your code changes are run as soon as the file is done saving.

There's one warning before you continue...

The CircuitPython code on your board detects when the files are changed or written

and will automatically re-start your code. This makes coding very fast because you

save, and it re-runs. If you unplug or reset the board before your computer finishes

writing the file to your board, you can corrupt the drive. If this happens, you may lose

the code you've written, so it's important to backup your code to your computer

regularly.

There are a couple of ways to avoid filesystem corruption.

1. Use an editor that writes out the file completely when you save it.

Check out the Recommended Editors page (https://adafru.it/Vue) for details on

different editing options.

Don't click reset or unplug your board!

If you are dragging a file from your host computer onto the CIRCUITPY drive, you

still need to do step 2. Eject or Sync (below) to make sure the file is completely

written.

©Adafruit Industries Page 50 of 130

https://learn.adafruit.com//assets/105706
https://learn.adafruit.com//assets/105706
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make

it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually

eject, but it will force the operating system to save your file to disk. On Linux, use the

sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file

manager to drag a file onto CIRCUITPY.

Oh No I Did Something Wrong and Now The CIRCUITPY

Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this

happens, follow the steps found on the Troubleshooting (https://adafru.it/Den) page

of every board guide to get your board up and running again.

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file

into your editor. You'll make a simple change. Change the first 0.5 to 0.1 . The code

should look like this:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.1)

 led.value = False

 time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your

board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it

looks like this:

©Adafruit Industries Page 51 of 130

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

while True:

 led.value = True

 time.sleep(0.1)

 led.value = False

 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on

and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly

because you've increased the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them

to see what happens! These were simple changes, but major changes are done using

the same process. Make your desired change, save it, and get the results. That's

really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.t

xt, code.py, main.txt and main.py. CircuitPython looks for those files, in that order, and

then runs the first one it finds. While code.py is the recommended name for your code

file, it is important to know that the other options exist. If your program doesn't seem

to be updating as you work, make sure you haven't created another code file that's

being read instead of the one you're working on.

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called

a "print statement". This is a line you include in your code that causes your code to

output text. A print statement in CircuitPython (and Python) looks like this:

print("Hello, world!")

This line in your code.py would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial

console comes in!

©Adafruit Industries Page 52 of 130

The serial console receives output from your CircuitPython board sent over USB and

displays it so you can see it. This is necessary when you've included a print statement

in your code and you'd like to see what you printed. It is also helpful for

troubleshooting errors, because your board will send errors and the serial console will

display those too.

The serial console requires an editor that has a built in terminal, or a separate

terminal program. A terminal is a program that gives you a text-based interface to

perform various tasks.

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board

making using the serial console really really easy.

First, make sure your CircuitPython board

is plugged in.

If you open Mu without a board plugged

in, you may encounter the error seen

here, letting you know no CircuitPython

board was found and indicating where

your code will be stored until you plug in

a board.

If you are using Windows 7, make sure

you installed the drivers (https://adafru.it/

VuB).

Once you've opened Mu with your board plugged in, look for the Serial button in the

button bar and click it.

The Mu window will split in two, horizontally, and display the serial console at the

bottom.

©Adafruit Industries Page 53 of 130

https://learn.adafruit.com//assets/105925
https://learn.adafruit.com//assets/105925
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers

Serial Console Issues or Delays on Linux

If you're on Linux, and are seeing multi-second delays connecting to the serial

console, or are seeing "AT" and other gibberish when you connect, then the modemma

nager service might be interfering. Just remove it; it doesn't have much use unless

you're still using dial-up modems.

To remove modemmanager , type the following command at a shell:

sudo apt purge modemmanager

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the S

erial button, you need to add yourself to a user group to have permission to connect

to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group.

On other Linux distributions, the group you need may be different. See the Advanced

If nothing appears in the serial console, it may mean your code is done running

or has no print statements in it. Click into the serial console part of Mu, and press

CTRL+D to reload.

©Adafruit Industries Page 54 of 130

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

Serial Console on Linux (https://adafru.it/VAO) for details on how to add yourself to

the right group.

Using Something Else?

If you're not using Mu to edit, are using or if for some reason you are not a fan of its

built in serial console, you can run the serial console from a separate program.

Windows requires you to download a terminal program. Check out the Advanced

Serial Console on Windows page for more details. (https://adafru.it/AAH)

MacOS has Terminal built in, though there are other options available for download. C

heck the Advanced Serial Console on Mac page for more details. (https://adafru.it/

AAI)

Linux has a terminal program built in, though other options are available for

download. Check the Advanced Serial Console on Linux page for more details. (https:

//adafru.it/VAO)

Once connected, you'll see something like the following.

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, you're going to

edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print

anything you like! Just include your phrase between the quotation marks inside the

parentheses. For example:

import board

import digitalio

import time

©Adafruit Industries Page 55 of 130

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello, CircuitPython!")

 led.value = True

 time.sleep(1)

 led.value = False

 time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed

text to something else.

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello back to you!")

 led.value = True

 time.sleep(1)

 led.value = False

 time.sleep(1)

Keep your serial console window where you can see it. Save your file. You'll see what

the serial console displays when the board reboots. Then you'll see your new change!

©Adafruit Industries Page 56 of 130

The Traceback (most recent call last): is telling you the last thing your board

was doing before you saved your file. This is normal behavior and will happen every

time the board resets. This is really handy for troubleshooting. Let's introduce an error

so you can see how it is used.

Delete the e at the end of True from the line led.value = True so that it says le

d.value = Tru

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello back to you!")

 led.value = Tru

 time.sleep(1)

 led.value = False

 time.sleep(1)

Save your file. You will notice that your red LED will stop blinking, and you may have a

colored status LED blinking at you. This is because the code is no longer correct and

can no longer run properly. You need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose.

You may have 200 lines of code, and have no idea where your error could be hiding.

This is where the serial console can help. Let's take a look!

The Traceback (most recent call last): is telling you that the last thing it was

able to run was line 10 in your code. The next line is your error: NameError: name

'Tru' is not defined . This error might not mean a lot to you, but combined with

knowing the issue is on line 10, it gives you a great place to start!

©Adafruit Industries Page 57 of 130

Go back to your code, and take a look at line 10. Obviously, you know what the

problem is already. But if you didn't, you'd want to look at line 10 and see if you could

figure it out. If you're still unsure, try googling the error to get some help. In this case,

you know what to look for. You spelled True wrong. Fix the typo and save your file.

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking

again.

The serial console will display any output generated by your code. Some sensors,

such as a humidity sensor or a thermistor, receive data and you can use print

statements to display that information. You can also use print statements for

troubleshooting, which is called "print debugging". Essentially, if your code isn't

working, and you want to know where it's failing, you can put print statements in

various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and

programming!

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL.

The REPL allows you to enter individual lines of code and have them run immediately.

It's really handy if you're running into trouble with a particular program and can't

figure out why. It's interactive so it's great for testing new ideas.

©Adafruit Industries Page 58 of 130

Entering the REPL

To use the REPL, you first need to be connected to the serial console. Once that

connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll

see Press any key to enter the REPL. Use CTRL-D to reload. Follow those

instructions, and press any key on your keyboard.

The Traceback (most recent call last): is telling you the last thing your board

was doing before you pressed Ctrl + C and interrupted it. The KeyboardInterrupt

is you pressing CTRL+C. This information can be handy when troubleshooting, but for

now, don't worry about it. Just note that it is expected behavior.

If your code.py file is empty or does not contain a loop, it will show an empty output

and Code done running. . There is no information about what your board was

doing before you interrupted it because there is no code running.

If you have no code.py on your CIRCUITPY drive, you will enter the REPL immediately

after pressing CTRL+C. Again, there is no information about what your board was

doing before you interrupted it because there is no code running.

©Adafruit Industries Page 59 of 130

Regardless, once you press a key you'll see a >>> prompt welcoming you to the

REPL!

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released.

Next, it gives you the type of board you're using and the type of microcontroller the

board uses. Each part of this may be different for your board depending on the

versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL

From this prompt you can run all sorts of commands and code. The first thing you'll do

is run help() . This will tell you where to start exploring the REPL. To run code in the

REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

©Adafruit Industries Page 60 of 130

First part of the message is another reference to the version of CircuitPython you're

using. Second, a URL for the CircuitPython related project guides. Then... wait. What's

this? To list built-in modules type `help("modules")`. Remember the

modules you learned about while going through creating code? That's exactly what

this is talking about! This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

This is a list of all the core modules built into CircuitPython, including board .

Remember, board contains all of the pins on the board that you can use in your

code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might

look like nothing happened, but that's not the case! If you recall, the import

statement simply tells the code to expect to do something with that module. In this

case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

This is a list of all of the pins on your board that are available for you to use in your

code. Each board's list will differ slightly depending on the number of pins available.

Do you see LED ? That's the pin you used to blink the red LED!

©Adafruit Industries Page 61 of 130

The REPL can also be used to run code. Be aware that any code you enter into the

REPL isn't saved anywhere. If you're testing something new that you'd like to keep,

make sure you have it saved somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that

says, "Hello, World." You're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire

programs into the REPL to test them. Remember that nothing typed into the REPL is

saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to

see if a few new lines of code will work. It's fantastic for troubleshooting code by

entering it one line at a time and finding out where it fails. It lets you see what

modules are available and explore those modules.

Try typing more into the REPL to see what happens!

Returning to the Serial Console

When you're ready to leave the REPL and return to the serial console, simply press CT

RL+D. This will reload your board and reenter the serial console. You will restart the

program you had running before entering the REPL. In the console window, you'll see

any output from the program you had running. And if your program was affecting

anything visual on the board, you'll see that start up again as well.

Everything typed into the REPL is ephemeral. Once you reload the REPL or return

to the serial console, nothing you typed will be retained in any memory space. So

be sure to save any desired code you wrote somewhere else, or you'll lose it

when you leave the current REPL instance!

©Adafruit Industries Page 62 of 130

You can return to the REPL at any time!

CircuitPython Libraries

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. These files are called libraries. Some of them

are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder

called lib. Part of what makes CircuitPython so great is its ability to store code

separately from the firmware itself. Storing code separately from the firmware makes

it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If

not, simply create the folder yourself. When you first install CircuitPython, an empty lib

directory will be created for you.

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 63 of 130

https://circuitpython.org/downloads
https://circuitpython.org/libraries

CircuitPython libraries work in the same way as regular Python modules so the Python

docs (https://adafru.it/rar) are an excellent reference for how it all should work. In

Python terms, you can place our library files in the lib directory because it's part of the

Python path by default.

One downside of this approach of separate libraries is that they are not built in. To

use them, one needs to copy them to the CIRCUITPY drive before they can be used.

Fortunately, there is a library bundle.

The bundle and the library releases on GitHub also feature optimized versions of the

libraries with the .mpy file extension. These files take less space on the drive and

have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with

the entire bundle. Therefore, you will need to load the libraries you need when you

begin working with your board. You can find example code in the guides for your

board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get

libraries on board.

The Adafruit CircuitPython Library Bundle

Adafruit provides CircuitPython libraries for much of the hardware they provide,

including sensors, breakouts and more. To eliminate the need for searching for each

library individually, the libraries are available together in the Adafruit CircuitPython

Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release by clicking

the button below. The libraries are being constantly updated and improved, so you'll

always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For

example, you would download the 6.x library bundle if you're running any version of

CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython

7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible

mpy errors due to changes in library interfaces possible during major version

changes.

©Adafruit Industries Page 64 of 130

https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

Click to visit circuitpython.org for the

latest Adafruit CircuitPython Library

Bundle

https://adafru.it/ENC

Download the bundle version that matches your CircuitPython firmware version. If you

don't know the version, check the version info in boot_out.txt file on the CIRCUITPY

drive, or the initial prompt in the CircuitPython REPL. For example, if you're running

v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably

don't want that unless you are doing advanced work on libraries.

The CircuitPython Community Library Bundle

The CircuitPython Community Library Bundle is made up of libraries written and

provided by members of the CircuitPython community. These libraries are often

written when community members encountered hardware not supported in the

Adafruit Bundle, or to support a personal project. The authors all chose to submit

these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit. As

you would with any library, if you run into problems, feel free to file an issue on the

GitHub repo for the library. Bear in mind, though, that most of these libraries are

supported by a single person and you should be patient about receiving a response.

Remember, these folks are not paid by Adafruit, and are volunteering their personal

time when possible to provide support.

Downloading the CircuitPython Community Library Bundle

You can download the latest CircuitPython Community Library Bundle release by

clicking the button below. The libraries are being constantly updated and improved,

so you'll always want to download the latest bundle.

Click for the latest CircuitPython

Community Library Bundle release

https://adafru.it/VCn

The link takes you to the latest release of the CircuitPython Community Library

Bundle on GitHub. There are multiple versions of the bundle available. Download the

©Adafruit Industries Page 65 of 130

https://circuitpython.org/libraries
https://github.com/adafruit/CircuitPython_Community_Bundle/releases

bundle version that matches your CircuitPython firmware version. If you don't know

the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the

initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,

download the 7.x library bundle.

Understanding the Bundle

After downloading the zip, extract its contents. This is usually done by double clicking

on the zip. On Mac OSX, it places the file in the same directory as the zip.

Open the bundle folder. Inside you'll find two information files, and two folders. One

folder is the lib bundle, and the other folder is the examples bundle.

Now open the lib folder. When you open the folder, you'll see a large number of .mpy

files, and folders.

©Adafruit Industries Page 66 of 130

Example Files

All example files from each library are now included in the bundles in an examples

directory (as seen above), as well as an examples-only bundle. These are included for

two main reasons:

Allow for quick testing of devices.

Provide an example base of code, that is easily built upon for individualized

purposes.

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you

extracted from the downloaded zip. Inside you'll find a number of folders and .mpy

files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire

folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the

downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename

it to code.py to run it.

Understanding Which Libraries to Install

You now know how to load libraries on to your CircuitPython-compatible

microcontroller board. You may now be wondering, how do you know which libraries

you need to install? Unfortunately, it's not always straightforward. Fortunately, there is

•

•

If a library has multiple .mpy files contained in a folder, be sure to copy the entire

folder to CIRCUITPY/lib.

©Adafruit Industries Page 67 of 130

an obvious place to start, and a relatively simple way to figure out the rest. First up:

the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or

more import statements. These typically look like the following:

import library_or_module

However, import statements can also sometimes look like the following:

from library_or_module import name

from library_or_module.subpackage import name

from library_or_module import name as local_name

They can also have more complicated formats, such as including a try / except

block, etc.

The important thing to know is that an import statement will always include the

name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or

other code shown here, as the purpose of this section involves only the import list.

import time

import board

import neopixel

import adafruit_lis3dh

import usb_hid

from adafruit_hid.consumer_control import ConsumerControl

from adafruit_hid.consumer_control_code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always

built-in CircuitPython modules. How do you know the difference? Time to visit the

REPL.

•

•

•

•

©Adafruit Industries Page 68 of 130

In the Interacting with the REPL section (https://adafru.it/Awz) on The REPL page (http

s://adafru.it/Awz) in this guide, the help("modules") command is discussed. This

command provides a list of all of the built-in modules available in CircuitPython for

your board. So, if you connect to the serial console on your board, and enter the

REPL, you can run help("modules") to see what modules are available for your

board. Then, as you read through the import statements, you can, for the purposes

of figuring out which libraries to load, ignore the statement that import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.

Your list may look similar or be anything down to a significant subset of this list for

smaller boards.

Now that you know what you're looking for, it's time to read through the import

statements. The first two, time and board , are on the modules list above, so they're

built-in.

The next one, neopixel , is not on the module list. That means it's your first library!

So, you would head over to the bundle zip you downloaded, and search for neopixel.

There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your CI

RCUITPY drive. The following one, adafruit_lis3dh , is also not on the module list.

Follow the same process for adafruit_lis3dh, where you'll find adafruit_lis3dh.mpy,

and copy that over.

The fifth one is usb_hid , and it is in the modules list, so it is built in. Often all of the

built-in modules come first in the import list, but sometimes they don't! Don't assume

that everything after the first library is also a library, and verify each import with the

modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are

formatted like this, the first thing after the from is the library name. In this case, the

library name is adafruit_hid . A search of the bundle will find an adafruit_hid folder.

©Adafruit Industries Page 69 of 130

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

When a library is a folder, you must copy the entire folder and its contents as it is in

the bundle to the lib folder on your CIRCUITPY drive. In this case, you would copy the

entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit_hid . Sometimes you will

need to import more than one thing from the same library. Regardless of how many

times you import the same library, you only need to load the library by copying over

the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on

your CircuitPython-compatible board!

There are cases, however, where libraries require other libraries internally. The

internally required library is called a dependency. In the event of library

dependencies, the easiest way to figure out what other libraries are required is to

connect to the serial console and follow along with the ImportError printed there.

The following is a very simple example of an ImportError , but the concept is the

same for any missing library.

Example: ImportError Due to Missing Library

If you choose to load libraries as you need them, or you're starting fresh with an

existing example, you may end up with code that tries to use a library you haven't yet

loaded. This section will demonstrate what happens when you try to utilise a library

that you don't have loaded on your board, and cover the steps required to resolve the

issue.

This demonstration will only return an error if you do not have the required library

loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board

import time

import simpleio

led = simpleio.DigitalOut(board.LED)

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

©Adafruit Industries Page 70 of 130

Save this file. Nothing happens to your board. Let's check the serial console to see

what's going on.

You have an ImportError . It says there is no module named 'simpleio' . That's

the one you just included in your code!

Click the link above to download the correct bundle. Extract the lib folder from the

downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file you're

looking for! Follow the steps above to load an individual library file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose

the library that matches the one you're missing.

Library Install on Non-Express Boards

If you have an M0 non-Express board such as Trinket M0, Gemma M0, QT Py M0, or

one of the M0 Trinkeys, you'll want to follow the same steps in the example above to

install libraries as you need them. Remember, you don't need to wait for an ImportE

rror if you know what library you added to your code. Open the library bundle you

downloaded, find the library you need, and drag it to the lib folder on your CIRCUITPY

drive.

You can still end up running out of space on your M0 non-Express board even if you

only load libraries as you need them. There are a number of steps you can use to try

©Adafruit Industries Page 71 of 130

to resolve this issue. You'll find suggestions on the Troubleshooting page (https://

adafru.it/Den).

Updating CircuitPython Libraries and Examples

Libraries and examples are updated from time to time, and it's important to update the

files you have on your CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag

the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates

include things like bug fixes and new features. It's important to check in every so

often to see if the libraries you're using have been updated.

CircuitPython Pins and Modules

CircuitPython is designed to run on microcontrollers and allows you to interface with

all kinds of sensors, inputs and other hardware peripherals. There are tons of guides

showing how to wire up a circuit, and use CircuitPython to, for example, read data

from a sensor, or detect a button press. Most CircuitPython code includes hardware

setup which requires various modules, such as board or digitalio . You import

these modules and then use them in your code. How does CircuitPython know to look

for hardware in the specific place you connected it, and where do these modules

come from?

This page explains both. You'll learn how CircuitPython finds the pins on your

microcontroller board, including how to find the available pins for your board and

what each pin is named. You'll also learn about the modules built into CircuitPython,

including how to find all the modules available for your board.

CircuitPython Pins

When using hardware peripherals with a CircuitPython compatible microcontroller,

you'll almost certainly be utilising pins. This section will cover how to access your

board's pins using CircuitPython, how to discover what pins and board-specific

objects are available in CircuitPython for your board, how to use the board-specific

objects, and how to determine all available pin names for a given pin on your board.

©Adafruit Industries Page 72 of 130

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

import board

When you're using any kind of hardware peripherals wired up to your microcontroller

board, the import list in your code will include import board . The board module is

built into CircuitPython, and is used to provide access to a series of board-specific

objects, including pins. Take a look at your microcontroller board. You'll notice that

next to the pins are pin labels. You can always access a pin by its pin label. However,

there are almost always multiple names for a given pin.

To see all the available board-specific objects and pins for your board, enter the REPL

(>>>) and run the following commands:

import board

dir(board)

Here is the output for the QT Py.

The following pins have labels on the physical QT Py board: A0, A1, A2, A3, SDA, SCL,

TX, RX, SCK, MISO, and MOSI. You see that there are many more entries available in

board than the labels on the QT Py.

You can use the pin names on the physical board, regardless of whether they seem to

be specific to a certain protocol.

For example, you do not have to use the SDA pin for I2C - you can use it for a button

or LED.

On the flip side, there may be multiple names for one pin. For example, on the QT Py,

pin A0 is labeled on the physical board silkscreen, but it is available in CircuitPython

as both A0 and D0 . For more information on finding all the names for a given pin,

see the What Are All the Available Pin Names? (https://adafru.it/QkA) section below.

The results of dir(board) for CircuitPython compatible boards will look similar to

the results for the QT Py in terms of the pin names, e.g. A0, D0, etc. However, some

boards, for example, the Metro ESP32-S2, have different styled pin names. Here is the

output for the Metro ESP32-S2.

©Adafruit Industries Page 73 of 130

https://learn.adafruit.com/circuitpython-essentials/circuitpython-pins-and-modules#what-are-all-the-available-names-3082670-14

Note that most of the pins are named in an IO# style, such as IO1 and IO2. Those pins

on the physical board are labeled only with a number, so an easy way to know how to

access them in CircuitPython, is to run those commands in the REPL and find the pin

naming scheme.

I2C, SPI, and UART

You'll also see there are often (but not always!) three special board-specific objects

included: I2C , SPI , and UART - each one is for the default pin-set used for each of

the three common protocol busses they are named for. These are called singletons.

What's a singleton? When you create an object in CircuitPython, you are instantiating

('creating') it. Instantiating an object means you are creating an instance of the object

with the unique values that are provided, or "passed", to it.

For example, When you instantiate an I2C object using the busio module, it expects

two pins: clock and data, typically SCL and SDA. It often looks like this:

i2c = busio.I2C(board.SCL, board.SDA)

Then, you pass the I2C object to a driver for the hardware you're using. For example,

if you were using the TSL2591 light sensor and its CircuitPython library, the next line

of code would be:

tsl2591 = adafruit_tsl2591.TSL2591(i2c)

However, CircuitPython makes this simpler by including the I2C singleton in the boa

rd module. Instead of the two lines of code above, you simply provide the singleton

as the I2C object. So if you were using the TSL2591 and its CircuitPython library, the

two above lines of code would be replaced with:

tsl2591 = adafruit_tsl2591.TSL2591(board.I2C())

If your code is failing to run because it can't find a pin name you provided, verify

that you have the proper pin name by running these commands in the REPL.

©Adafruit Industries Page 74 of 130

This eliminates the need for the busio module, and simplifies the code. Behind the

scenes, the board.I2C() object is instantiated when you call it, but not before, and

on subsequent calls, it returns the same object. Basically, it does not create an object

until you need it, and provides the same object every time you need it. You can call

board.I2C() as many times as you like, and it will always return the same object.

What Are All the Available Names?

Many pins on CircuitPython compatible microcontroller boards have multiple names,

however, typically, there's only one name labeled on the physical board. So how do

you find out what the other available pin names are? Simple, with the following script!

Each line printed out to the serial console contains the set of names for a particular

pin.

On a microcontroller board running CircuitPython, connect to the serial console. Then,

save the following as code.py on your CIRCUITPY drive.

"""CircuitPython Essentials Pin Map Script"""

import microcontroller

import board

board_pins = []

for pin in dir(microcontroller.pin):

 if isinstance(getattr(microcontroller.pin, pin), microcontroller.Pin):

 pins = []

 for alias in dir(board):

 if getattr(board, alias) is getattr(microcontroller.pin, pin):

 pins.append("board.{}".format(alias))

 if len(pins) > 0:

 board_pins.append(" ".join(pins))

for pins in sorted(board_pins):

 print(pins)

Here is the result when this script is run on QT Py:

The UART/SPI/I2C singletons will use the 'default' bus pins for each board - often

labeled as RX/TX (UART), MOSI/MISO/SCK (SPI), or SDA/SCL (I2C). Check your

board documentation/pinout for the default busses.

©Adafruit Industries Page 75 of 130

Each line represents a single pin. Find the line containing the pin name that's labeled

on the physical board, and you'll find the other names available for that pin. For

example, the first pin on the board is labeled A0. The first line in the output is board

.A0 board.D0 . This means that you can access pin A0 with both board.A0 and bo

ard.D0 .

You'll notice there are two "pins" that aren't labeled on the board but appear in the

list: board.NEOPIXEL and board.NEOPIXEL_POWER . Many boards have several of

these special pins that give you access to built-in board hardware, such as an LED or

an on-board sensor. The Qt Py only has one on-board extra piece of hardware, a

NeoPixel LED, so there's only the one available in the list. But you can also control

whether or not power is applied to the NeoPixel, so there's a separate pin for that.

That's all there is to figuring out the available names for a pin on a compatible

microcontroller board in CircuitPython!

Microcontroller Pin Names

The pin names available to you in the CircuitPython board module are not the same

as the names of the pins on the microcontroller itself. The board pin names are

aliases to the microcontroller pin names. If you look at the datasheet for your

microcontroller, you'll likely find a pinout with a series of pin names, such as "PA18" or

"GPIO5". If you want to get to the actual microcontroller pin name in CircuitPython,

you'll need the microcontroller.pin module. As with board , you can run dir(m

icrocontroller.pin) in the REPL to receive a list of the microcontroller pin names.

©Adafruit Industries Page 76 of 130

CircuitPython Built-In Modules

There is a set of modules used in most CircuitPython programs. One or more of these

modules is always used in projects involving hardware. Often hardware requires

installing a separate library from the Adafruit CircuitPython Bundle. But, if you try to

find board or digitalio in the same bundle, you'll come up lacking. So, where do

these modules come from? They're built into CircuitPython! You can find an

comprehensive list of built-in CircuitPython modules and the technical details of their

functionality from CircuitPython here (https://adafru.it/QkB) and the Python-like

modules included here (https://adafru.it/QkC). However, not every module is available

for every board due to size constraints or hardware limitations. How do you find out

what modules are available for your board?

There are two options for this. You can check the support matrix (https://adafru.it/

N2a), and search for your board by name. Or, you can use the REPL.

Plug in your board, connect to the serial console and enter the REPL. Type the

following command.

help("modules")

That's it! You now know two ways to find all of the modules built into CircuitPython for

your compatible microcontroller board.

Advanced Serial Console on Mac

Connecting to the serial console on Mac does not require installing any drivers or

extra software. You'll use a terminal program to find your board, and screen to

connect to it. Terminal and screen both come installed by default.

©Adafruit Industries Page 77 of 130

https://circuitpython.readthedocs.io/en/latest/shared-bindings/index.html#modules
https://circuitpython.readthedocs.io/en/latest/docs/library/index.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html#

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without

the board plugged in. Open Terminal and type the following:

ls /dev/tty.*

Each serial connection shows up in the /dev/ directory. It has a name that starts with

tty. . The command ls shows you a list of items in a directory. You can use * as a

wildcard, to search for files that start with the same letters but end in something

different. In this case, you're asking to see all of the listings in /dev/ that start with t

ty. and end in anything. This will show us the current serial connections.

Now, plug your board. In Terminal, type:

ls /dev/tty.*

This will show you the current serial connections, which will now include your board.

©Adafruit Industries Page 78 of 130

A new listing has appeared called /dev/tty.usbmodem141441 . The tty.usbmodem

141441 part of this listing is the name the example board is using. Yours will be called

something similar.

Using Linux, a new listing has appeared called /dev/ttyACM0 . The ttyACM0 part of

this listing is the name the example board is using. Yours will be called something

similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial

console. You're going to use a command called screen . The screen command is

included with MacOS. To connect to the serial console, use Terminal. Type the

following command, replacing board_name with the name you found your board is

using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part tells

screen the name of the board you're trying to use. The third part tells screen what

baud rate to use for the serial connection. The baud rate is the speed in bits per

second that data is sent over the serial connection. In this case, the speed required

by the board is 115200 bits per second.

©Adafruit Industries Page 79 of 130

Press enter to run the command. It will open in the same window. If no code is

running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Advanced Serial Console on Windows

Windows 7 and 8.1

If you're using Windows 7 (or 8 or 8.1), you'll need to install drivers. See the Windows 7

and 8.1 Drivers page (https://adafru.it/VuB) for details. You will not need to install

drivers on Mac, Linux or Windows 10.

You are strongly encouraged to upgrade to Windows 10 if you are still using Windows

7 or Windows 8 or 8.1. Windows 7 has reached end-of-life and no longer receives

security updates. A free upgrade to Windows 10 is still available (https://adafru.it/

RWc).

What's the COM?

First, you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

You'll use Windows Device Manager to determine which port the board is using. The

easiest way to determine which port the board is using is to first check without the

©Adafruit Industries Page 80 of 130

https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://www.zdnet.com/article/heres-how-you-can-still-get-a-free-windows-10-upgrade/

board plugged in. Open Device Manager. Click on Ports (COM & LPT). You should find

something already in that list with (COM#) after it where # is a number.

Now plug in your board. The Device Manager list will refresh and a new item will

appear under Ports (COM & LPT). You'll find a different (COM#) after this item in the

list.

Sometimes the item will refer to the name of the board. Other times it may be called

something like USB Serial Device, as seen in the image above. Either way, there is a

new (COM#) following the name. This is the port your board is using.

©Adafruit Industries Page 81 of 130

Install Putty

If you're using Windows, you'll need to download a terminal program. You're going to

use PuTTY.

The first thing to do is download the latest version of PuTTY (https://adafru.it/Bf1).

You'll want to download the Windows installer file. It is most likely that you'll need the

64-bit version. Download the file and install the program on your machine. If you run

into issues, you can try downloading the 32-bit version instead. However, the 64-bit

version will work on most PCs.

Now you need to open PuTTY.

Under Connection type: choose the button next to Serial.

In the box under Serial line, enter the serial port you found that your board is

using.

In the box under Speed, enter 115200. This called the baud rate, which is the

speed in bits per second that data is sent over the serial connection. For boards

with built in USB it doesn't matter so much but for ESP8266 and other board

with a separate chip, the speed required by the board is 115200 bits per second.

So you might as well just use 115200!

If you want to save those settings for later, use the options under Load, save or delete

a stored session. Enter a name in the box under Saved Sessions, and click the Save

button on the right.

•

•

•

©Adafruit Industries Page 82 of 130

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Once your settings are entered, you're ready to connect to the serial console. Click

"Open" at the bottom of the window. A new window will open.

If no code is running, the window will either be blank or will look like the window

above. Now you're ready to see the results of your code.

Great job! You've connected to the serial console!

©Adafruit Industries Page 83 of 130

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and

great for learning. It runs on microcontrollers and works out of the box. You can plug it

in and get started with any text editor. The best part? CircuitPython comes with an

amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for

anyone to use, edit, copy and improve upon. This also means CircuitPython becomes

better because of you being a part of it. Whether this is your first microcontroller

board or you're a seasoned software engineer, you have something important to offer

the Adafruit CircuitPython community. This page highlights some of the many ways

you can be a part of it!

Adafruit Discord

©Adafruit Industries Page 84 of 130

The Adafruit Discord server is the best place to start. Discord is where the community

comes together to volunteer and provide live support of all kinds. From general

discussion to detailed problem solving, and everything in between, Discord is a digital

maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your

needs. Each channel is shown on Discord as "#channelname". There's the #help-with-

projects channel for assistance with your current project or help coming up with ideas

for your next one. There's the #show-and-tell channel for showing off your newest

creation. Don't be afraid to ask a question in any channel! If you're unsure, #general is

a great place to start. If another channel is more likely to provide you with a better

answer, someone will guide you.

The help with CircuitPython channel is where to go with your CircuitPython questions.

#help-with-circuitpython is there for new users and developers alike so feel free to

ask a question or post a comment! Everyone of any experience level is welcome to

join in on the conversation. Your contributions are important! The #circuitpython-dev

channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord.

Supporting others doesn't always mean answering questions. Join in celebrating

successes! Celebrate your mistakes! Sometimes just hearing that someone else has

gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your

granddaughter to.

Visit https://adafru.it/discord ()to sign up for Discord. Everyone is looking forward to

meeting you!

©Adafruit Industries Page 85 of 130

https://adafru.it/discord

CircuitPython.org

Beyond the Adafruit Learn System, which you are viewing right now, the best place to

find information about CircuitPython is circuitpython.org (https://adafru.it/KJD).

Everything you need to get started with your new microcontroller and beyond is

available. You can do things like download CircuitPython for your microcontroller (htt

ps://adafru.it/Em8) or download the latest CircuitPython Library bundle (https://

adafru.it/ENC), or check out which single board computers support Blinka (https://

adafru.it/EA8). You can also get to various other CircuitPython related things like

Awesome CircuitPython or the Python for Microcontrollers newsletter. This is all

incredibly useful, but it isn't necessarily community related. So why is it included

here? The Contributing page (https://adafru.it/VD7).

CircuitPython itself is written in C. However, all of the Adafruit CircuitPython libraries

are written in Python. If you're interested in contributing to CircuitPython on the

Python side of things, check out circuitpython.org/contributing (https://adafru.it/VD7).

You'll find information pertaining to every Adafruit CircuitPython library GitHub

repository, giving you the opportunity to join the community by finding a contributing

option that works for you.

Note the date on the page next to Current Status for:

©Adafruit Industries Page 86 of 130

https://circuitpython.org
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/blinka
https://circuitpython.org/contributing
https://circuitpython.org/contributing

If you submit any contributions to the libraries, and do not see them reflected on the

Contributing page, it could be that the job that checks for new updates hasn't yet run

for today. Simply check back tomorrow!

Now, a look at the different options.

Pull Requests

The first tab you'll find is a list of open pull requests.

GitHub pull requests, or PRs, are opened when folks have added something to an

Adafruit CircuitPython library GitHub repo, and are asking for Adafruit to add, or

merge, their changes into the main library code. For PRs to be merged, they must first

be reviewed. Reviewing is a great way to contribute! Take a look at the list of open

pull requests, and pick one that interests you. If you have the hardware, you can test

code changes. If you don't, you can still check the code updates for syntax. In the

case of documentation updates, you can verify the information, or check it for spelling

and grammar. Once you've checked out the update, you can leave a comment letting

us know that you took a look. Once you've done that for a while, and you're more

comfortable with it, you can consider joining the CircuitPythonLibrarians review team.

The more reviewers we have, the more authors we can support. Reviewing is a crucial

part of an open source ecosystem, CircuitPython included.

Open Issues

The second tab you'll find is a list of open issues.

©Adafruit Industries Page 87 of 130

GitHub issues are filed for a number of reasons, including when there is a bug in the

library or example code, or when someone wants to make a feature request. Issues

are a great way to find an opportunity to contribute directly to the libraries by

updating code or documentation. If you're interested in contributing code or

documentation, take a look at the open issues and find one that interests you.

If you're not sure where to start, you can search the issues by label. Labels are

applied to issues to make the goal easier to identify at a first glance, or to indicate the

difficulty level of the issue. Click on the dropdown next to "Sort by issue labels" to see

the list of available labels, and click on one to choose it.

If you're new to everything, new to contributing to open source, or new to

contributing to the CircuitPython project, you can choose "Good first issue". Issues

with that label are well defined, with a finite scope, and are intended to be easy for

someone new to figure out.

If you're looking for something a little more complicated, consider "Bug" or

"Enhancement". The Bug label is applied to issues that pertain to problems or failures

found in the library. The Enhancement label is applied to feature requests.

©Adafruit Industries Page 88 of 130

Don't let the process intimidate you. If you're new to Git and GitHub, there is a guide (

https://adafru.it/Dkh) to walk you through the entire process. As well, there are always

folks available on Discord () to answer questions.

Library Infrastructure Issues

The third tab you'll find is a list of library infrastructure issues.

This section is generated by a script that runs checks on the libraries, and then

reports back where there may be issues. It is made up of a list of subsections each

containing links to the repositories that are experiencing that particular issue. This

page is available mostly for internal use, but you may find some opportunities to

contribute on this page. If there's an issue listed that sounds like something you could

help with, mention it on Discord, or file an issue on GitHub indicating you're working

to resolve that issue. Others can reply either way to let you know what the scope of it

might be, and help you resolve it if necessary.

CircuitPython Localization

The fourth tab you'll find is the CircuitPython Localization tab.

If you speak another language, you can help translate CircuitPython! The translations

apply to informational and error messages that are within the CircuitPython core. It

means that folks who do not speak English have the opportunity to have these

messages shown to them in their own language when using CircuitPython. This is

©Adafruit Industries Page 89 of 130

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https:adafru.it/discord

incredibly important to provide the best experience possible for all users.

CircuitPython uses Weblate to translate, which makes it much simpler to contribute

translations. You will still need to know some CircuitPython-specific practices and a

few basics about coding strings, but as with any CircuitPython contributions, folks are

there to help.

Regardless of your skill level, or how you want to contribute to the CircuitPython

project, there is an opportunity available. The Contributing page (https://adafru.it/VD7)

is an excellent place to start!

Adafruit GitHub

Whether you're just beginning or are life-long programmer who would like to

contribute, there are ways for everyone to be a part of the CircuitPython project. The

CircuitPython core is written in C. The libraries are written in Python. GitHub is the

best source of ways to contribute to the CircuitPython core (https://adafru.it/tB7), and

the CircuitPython libraries (https://adafru.it/VFv). If you need an account, visit https://

github.com/ (https://adafru.it/d6C) and sign up.

If you're new to GitHub or programming in general, there are great opportunities for

you. For the CircuitPython core, head over to the CircuitPython repository on GitHub,

click on "Issues (https://adafru.it/tBb)", and you'll find a list that includes issues labeled

"good first issue (https://adafru.it/Bef)". For the libraries, head over to the Contributing

page Issues list (https://adafru.it/VFv), and use the drop down menu to search for "go

od first issue (https://adafru.it/VFw)". These issues are things that have been identified

as something that someone with any level of experience can help with. These issues

include options like updating documentation, providing feedback, and fixing simple

bugs. If you need help getting started with GitHub, there is an excellent guide on Con

tributing to CircuitPython with Git and GitHub (https://adafru.it/Dkh).

©Adafruit Industries Page 90 of 130

https://circuitpython.org/contributing
https://github.com/adafruit/circuitpython
https://circuitpython.org/contributing/open-issues
https://github.com/
https://github.com/
https://github.com/adafruit/circuitpython/issues
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github

Already experienced and looking for a challenge? Checkout the rest of either issues

list and you'll find plenty of ways to contribute. You'll find all sorts of things, from new

driver requests, to library bugs, to core module updates. There's plenty of

opportunities for everyone at any level!

When working with or using CircuitPython or the CircuitPython libraries, you may find

problems. If you find a bug, that's great! The team loves bugs! Posting a detailed issue

to GitHub is an invaluable way to contribute to improving CircuitPython. For

CircuitPython itself, file an issue here (https://adafru.it/tBb). For the libraries, file an

issue on the specific library repository on GitHub. Be sure to include the steps to

replicate the issue as well as any other information you think is relevant. The more

detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of

CircuitPython or a library onto your CircuitPython hardware, and use it. Let us know

about any problems you find by posting a new issue to GitHub. Software testing on

both stable and unstable releases is a very important part of contributing

CircuitPython. The developers can't possibly find all the problems themselves! They

need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and

much more. If you have questions, remember that Discord and the Forums are both

there for help!

Adafruit Forums

The Adafruit Forums (https://adafru.it/jIf) are the perfect place for support. Adafruit

has wonderful paid support folks to answer any questions you may have. Whether

your hardware is giving you issues or your code doesn't seem to be working, the

forums are always there for you to ask. You need an Adafruit account to post to the

forums. You can use the same account you use to order from Adafruit.

©Adafruit Industries Page 91 of 130

https://github.com/adafruit/circuitpython/issues
https://forums.adafruit.com

While Discord may provide you with quicker responses than the forums, the forums

are a more reliable source of information. If you want to be certain you're getting an

Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything

Adafruit. The Adafruit CircuitPython and MicroPython (https://adafru.it/xXA) category

under "Supported Products & Projects" is the best place to post your CircuitPython

questions.

Be sure to include the steps you took to get to where you are. If it involves wiring,

post a picture! If your code is giving you trouble, include your code in your post!

These are great ways to make sure that there's enough information to help you with

your issue.

You might think you're just getting started, but you definitely know something that

someone else doesn't. The great thing about the forums is that you can help others

too! Everyone is welcome and encouraged to provide constructive feedback to any of

the posted questions. This is an excellent way to contribute to the community and

share your knowledge!

Read the Docs

Read the Docs (https://adafru.it/Beg) is a an excellent resource for a more detailed

look at the CircuitPython core and the CircuitPython libraries. This is where you'll find

©Adafruit Industries Page 92 of 130

https://forums.adafruit.com/viewforum.php?f=60
https://circuitpython.readthedocs.io/

things like API documentation and example code. For an in depth look at viewing and

understanding Read the Docs, check out the CircuitPython Documentation (https://

adafru.it/VFx) page!

Frequently Asked Questions

These are some of the common questions regarding CircuitPython and CircuitPython

microcontrollers.

I have to continue using CircuitPython 5.x or earlier.

Where can I find compatible libraries?

We are no longer building or supporting the CircuitPython 5.x or earlier library

bundles. We highly encourage you to update CircuitPython to the latest

version (https://adafru.it/Em8) and use the current version of the libraries (https://

adafru.it/ENC). However, if for some reason you cannot update, here are the last

available library bundles for older versions:

2.x bundle (https://adafru.it/FJA)

3.x bundle (https://adafru.it/FJB)

4.x bundle (https://adafru.it/QDL)

5.x bundle (https://adafru.it/QDJ)

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

•

•

•

•

©Adafruit Industries Page 93 of 130

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-documentation
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip

Is ESP8266 or ESP32 supported in CircuitPython? Why

not?

We dropped ESP8266 support as of 4.x - For more information please read about it

here!

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-

esp8266 (https://adafru.it/CiG)

We do not support ESP32 because it does not have native USB.

We do support ESP32-S2, which has native USB.

How do I connect to the Internet with CircuitPython?

If you'd like to include WiFi in your project, check out this guide (https://adafru.it/

F5X) on using AirLift with CircuitPython. For further project examples, and guides

about using AirLift with specific hardware, check out the Adafruit Learn

System (https://adafru.it/VBr).

Is there asyncio support in CircuitPython?

We do not have asyncio support in CircuitPython at this time. However, async and

await are turned on in many builds, and we are looking at how to use event loops

and other constructs effectively and easily.

My RGB NeoPixel/DotStar LED is blinking funny colors -

what does it mean?

The status LED can tell you what's going on with your CircuitPython board. Read

more here for what the colors mean! (https://adafru.it/Den)

What is a MemoryError?

Memory allocation errors happen when you're trying to store too much on the

board. The CircuitPython microcontroller boards have a limited amount of memory

available. You can have about 250 lines of code on the M0 Express boards. If you

try to import too many libraries, a combination of large libraries, or run a program

with too many lines of code, your code will fail to run and you will receive a

MemoryError in the serial console.

©Adafruit Industries Page 94 of 130

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/adafruit-io-basics-airlift
https://learn.adafruit.com/search?q=airlift
https://learn.adafruit.com/search?q=airlift
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24

MemoryError?"> What do I do when I encounter a

MemoryError?

Try resetting your board. Each time you reset the board, it reallocates the memory.

While this is unlikely to resolve your issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries

are available in the bundle in a .mpy format which takes up less memory than .py

format. Be sure that you're using the latest library bundle (https://adafru.it/uap) for

your version of CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments,

remove extraneous or unneeded code, or any other clean up you can do to

shorten your code. If you're using a lot of functions, you could try moving those

into a separate library, creating a .mpy of that library, and importing it into your

code.

You can turn your entire file into a .mpy and import that into code.py. This means

you will be unable to edit your code live on the board, but it can save you space.

Can the order of my import statements affect memory?

It can because the memory gets fragmented differently depending on allocation

order and the size of objects. Loading .mpy files uses less memory so its

recommended to do that for files you aren't editing.

How can I create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross .

You can download mpy-cross for your operating system from here (https://

adafru.it/QDK). Builds are available for Windows, macOS, x64 Linux, and Raspberry

Pi Linux. Choose the latest mpy-cross whose version matches the version of

CircuitPython you are using.

To make a .mpy file, run ./mpy-cross path/to/yourfile.py to create a

yourfile.mpy in the same directory as the original file.

How do I check how much memory I have free?

Run the following to see the number of bytes available for use:

©Adafruit Industries Page 95 of 130

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/

import gc

gc.mem_free()

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts. We do not have an

estimated time for when they will be included

Does Feather M0 support WINC1500?

No, WINC1500 will not fit into the M0 flash space.

Can AVRs such as ATmega328 or ATmega2560 run

CircuitPython?

No.

Commonly Used Acronyms

CP or CPy = CircuitPython (https://adafru.it/KJD)

CPC = Circuit Playground Classic (https://adafru.it/ncE)

CPX = Circuit Playground Express (https://adafru.it/wpF)

CPB = Circuit Playground Bluefruit (https://adafru.it/Gpe)

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are

a few things you may encounter and how to resolve them.

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 96 of 130

https://circuitpython.org
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333
https://circuitpython.org/downloads
https://circuitpython.org/libraries

Always Run the Latest Version of

CircuitPython and Libraries

As CircuitPython development continues and there are new releases, Adafruit will

stop supporting older releases. You need to update to the latest CircuitPython. (https:

//adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your version of

CircuitPython. Please update CircuitPython and then download the latest bundle (http

s://adafru.it/ENC).

As new versions of CircuitPython are released, Adafruit will stop providing the

previous bundles as automatically created downloads on the Adafruit CircuitPython

Library Bundle repo. If you must continue to use an earlier version, you can still

download the appropriate version of mpy-cross from the particular release of

CircuitPython on the CircuitPython repo and create your own compatible .mpy library

files. However, it is best to update to the latest for both CircuitPython and the library

bundle.

I have to continue using CircuitPython 5.x or earlier.

Where can I find compatible libraries?

Adafruit is no longer building or supporting the CircuitPython 5.x or earlier library

bundles. You are highly encourged to update CircuitPython to the latest version (http

s://adafru.it/Em8) and use the current version of the libraries (https://adafru.it/ENC).

However, if for some reason you cannot update, links to the previous bundles are

available in the FAQ (https://adafru.it/FwY).

Bootloader (boardnameBOOT) Drive Not

Present

You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship with the UF2

bootloader (https://adafru.it/zbX)installed. The Feather M0 Basic, Feather M0

Adalogger, and similar boards use a regular Arduino-compatible bootloader, which

does not show a boardnameBOOT drive.

©Adafruit Industries Page 97 of 130

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions#faq-3105289
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader

MakeCode

If you are running a MakeCode (https://adafru.it/zbY) program on Circuit Playground

Express, press the reset button just once to get the CPLAYBOOT drive to show up.

Pressing it twice will not work.

MacOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the

BOOT drive. See this forum post (https://adafru.it/sTc) for how to fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade

to Windows 10 with the driver package installed? You don't need to install this

package on Windows 10 for most Adafruit boards. The old version (v1.5) can interfere

with recognizing your device. Go to Settings -> Apps and uninstall all the "Adafruit"

driver programs.

Windows 7 or 8.1

To use a CircuitPython-compatible board with Windows 7 or 8.1, you must install a

driver. Installation instructions are available here (https://adafru.it/VuB).

It is recommended (https://adafru.it/Amd) that you upgrade to Windows 10 if possible;

an upgrade is probably still free for you. Check here (https://adafru.it/Amd).

You should now be done! Test by unplugging and replugging the board. You should

see the CIRCUITPY drive, and when you double-click the reset button (single click on

Circuit Playground Express running MakeCode), you should see the appropriate boar

dnameBOOT drive.

Let us know in the Adafruit support forums (https://adafru.it/jIf) or on the Adafruit

Discord () if this does not work for you!

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0) .

Windows 7 drivers for CircuitPython boards released since then, including

RP2040 boards, are not yet available. The boards work fine on Windows 10. A

new release of the drivers is in process.

©Adafruit Industries Page 98 of 130

file:///home/deploy/makecode/sharing-and-saving?view=all#step-1-bootloader-mode
https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://forums.adafruit.com
https://adafru.it/discord
https://adafru.it/discord

Windows Explorer Locks Up When

Accessing boardnameBOOT Drive

On Windows, several third-party programs that can cause issues. The symptom is that

you try to access the boardnameBOOT drive, and Windows or Windows Explorer

seems to lock up. These programs are known to cause trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64.

They acquired hardware to test, and released a beta version that fixes the

problem. This may have been incorporated into the latest release. Please let us

know in the forums if you test this.

Hard Disk Sentinel

Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely.

Disabling some aspects of Kaspersky does not always solve the problem. This

problem has been reported to Kaspersky.

ESET NOD32 anti-virus: There have been problems with at least version

9.0.386.0, solved by uninstallation.

Copying UF2 to boardnameBOOT Drive

Hangs at 0% Copied

On Windows, a Western DIgital (WD) utility that comes with their external USB drives

can interfere with copying UF2 files to the boardnameBOOT drive. Uninstall that utility

to fix the problem.

CIRCUITPY Drive Does Not Appear

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. There has not

yet been settings change discovered that prevents this. Complete uninstallation of

Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this problem on

Windows 7. The user turned off both Smart Firewall and Auto Protect, and CIRCUITPY

then appeared.

•

•

•

•

©Adafruit Industries Page 99 of 130

Device Errors or Problems on Windows

Windows can become confused about USB device installations. This is particularly

true of Windows 7 and 8.1. It is recommended (https://adafru.it/Amd) that you upgrade

to Windows 10 if possible; an upgrade is probably still free for you: see this link (https

://adafru.it/V2a).

If not, try cleaning up your USB devices. Use Uwe Sieber's Device Cleanup Tool (http

s://adafru.it/RWd). Download and unzip the tool. Unplug all the boards and other USB

devices you want to clean up. Run the tool as Administrator. You will see a listing like

this, probably with many more devices. It is listing all the USB devices that are not

currently attached.

Select all the devices you want to remove, and then press Delete. It is usually safe

just to select everything. Any device that is removed will get a fresh install when you

plug it in. Using the Device Cleanup Tool also discards all the COM port assignments

for the unplugged boards. If you have used many Arduino and CircuitPython boards,

you have probably seen higher and higher COM port numbers used, seemingly

without end. This will fix that problem.

Serial Console in Mu Not Displaying

Anything

There are times when the serial console will accurately not display anything, such as,

when no code is currently running, or when code with no serial output is already

running before you open the console. However, if you find yourself in a situation

where you feel it should be displaying something like an error, consider the following.

©Adafruit Industries Page 100 of 130

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://www.cnet.com/tech/services-and-software/windows-10-download/
https://www.uwe-sieber.de/misc_tools_e.html

Depending on the size of your screen or Mu window, when you open the serial

console, the serial console panel may be very small. This can be a problem. A basic

CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.

code.py output:

Traceback (most recent call last):

 File "code.py", line 7

SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only see blank

lines or blank lines followed by Press any key to enter the REPL. Use CTRL-D

to reload. . If this is the case, you need to either mouse over the top of the panel to

utilise the option to resize the serial panel, or use the scrollbar on the right side to

scroll up and find your message.

This applies to any kind of serial output whether it be error messages or print

statements. So before you start trying to debug your problem on the hardware side,

be sure to check that you haven't simply missed the serial messages due to serial

output panel height.

CircuitPython RGB Status Light

Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED

on the board that indicates the status of CircuitPython. A few boards designed before

CircuitPython existed, such as the Feather M0 Basic, do not.

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB LEDs,

but do NOT have a status LED. The LEDs are all green when in the bootloader. In

versions before 7.0.0, they do NOT indicate any status while running CircuitPython.

©Adafruit Industries Page 101 of 130

CircuitPython 7.0.0 and Later

The status LED blinks were changed in CircuitPython 7.0.0 in order to save battery

power and simplify the blinks. These blink patterns will occur on single color LEDs

when the board does not have any RGB LEDs. Speed and blink count also vary for

this reason.

On start up, the LED will blink YELLOW multiple times for 1 second. Pressing reset

during this time will restart the board and then enter safe mode. On Bluetooth

capable boards, after the yellow blinks, there will be a set of faster blue blinks.

Pressing reset during the BLUE blinks will clear Bluetooth information and start the

device in discoverable mode, so it can be used with a BLE code editor.

Once started, CircuitPython will blink a pattern every 5 seconds when no user code is

running to indicate why the code stopped:

1 GREEN blink: Code finished without error.

2 RED blinks: Code ended due to an exception. Check the serial console for

details.

3 YELLOW blinks: CircuitPython is in safe mode. No user code was run. Check

the serial console for safe mode reason.

When in the REPL, CircuitPython will set the status LED to WHITE. You can change the

LED color from the REPL. The status indicator will not persist on non-NeoPixel or

DotStar LEDs.

•

•

•

©Adafruit Industries Page 102 of 130

CircuitPython 6.3.0 and earlier

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt, main.py, or main.txt) is running

pulsing GREEN: code.py (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for

a reset to indicate that it should start in safe mode

pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted

steady WHITE: REPL is running

steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate

the line number of the error. The color of the first flash indicates the type of error:

GREEN: IndentationError

CYAN: SyntaxError

WHITE: NameError

ORANGE: OSError

PURPLE: ValueError

YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHIT

E flashes are thousands' place, BLUE are hundreds' place, YELLOW are tens' place,

and CYAN are one's place. So for example, an error on line 32 would flash YELLOW

three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 103 of 130

Serial console showing ValueError:

Incompatible .mpy file

This error occurs when importing a module that is stored as a .mpy binary file that

was generated by a different version of CircuitPython than the one its being loaded

into. In particular, the mpy binary format changed between CircuitPython versions 6.x

and 7.x, 2.x and 3.x, and 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to download

a newer version of the library that triggered the error on import . All libraries are

available in the Adafruit bundle (https://adafru.it/y8E).

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find

that your CIRCUITPY stops showing up in your file explorer, or shows up as NO_NAM

E. These are indicators that your filesystem has issues. When the CIRCUITPY disk is

not safely ejected before being reset by the button or being disconnected from USB,

it may corrupt the flash drive. It can happen on Windows, Mac or Linux, though it is

more common on Windows.

Be aware, if you have used Arduino to program your board, CircuitPython is no longer

able to provide the USB services. You will need to reload CircuitPython to resolve this

situation.

©Adafruit Industries Page 104 of 130

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

The easiest first step is to reload CircuitPython. Double-tap reset on the board so you

get a boardnameBOOT drive rather than a CIRCUITPY drive, and copy the latest

version of CircuitPython (.uf2) back to the board. This may restore CIRCUITPY

functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try putting

the board into safe mode.

Safe Mode

Whether you've run into a situation where you can no longer edit your code.py on

your CIRCUITPY drive, your board has gotten into a state where CIRCUITPY is read-

only, or you have turned off the CIRCUITPY drive altogether, safe mode can help.

Safe mode in CircuitPython does not run any user code on startup, and disables auto-

reload. This means a few things. First, safe mode bypasses any code in boot.py

(where you can set CIRCUITPY read-only or turn it off completely). Second, it does not

run the code in code.py. And finally, it does not automatically soft-reload when data is

written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,

safe mode gives you the opportunity to correct it without losing all of the data on the

CIRCUITPY drive.

Entering Safe Mode in CircuitPython 7.x

To enter safe mode when using CircuitPython 7.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

1000ms. On some boards, the onboard status LED will blink yellow during that time. If

you press reset during that 1000ms, the board will start up in safe mode. It can be

difficult to react to the yellow LED, so you may want to think of it simply as a "slow"

double click of the reset button. (Remember, a fast double click of reset enters the

bootloader.)

Entering Safe Mode in CircuitPython 6.x

To enter safe mode when using CircuitPython 6.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

700ms. On some boards, the onboard status LED (highlighted in green above) will

turn solid yellow during this time. If you press reset during that 700ms, the board will

©Adafruit Industries Page 105 of 130

start up in safe mode. It can be difficult to react to the yellow LED, so you may want to

think of it simply as a slow double click of the reset button. (Remember, a fast double

click of reset enters the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse

yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently

blink yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.

Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.

Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not

run until you press the reset button, or unplug and plug in your board, to get out of

safe mode.

At this point, you'll want to remove any user code in code.py and, if present, the boot.

py file from CIRCUITPY. Once removed, tap the reset button, or unplug and plug in

your board, to restart CircuitPython. This will restart the board and may resolve your

drive issues. If resolved, you can begin coding again as usual.

If safe mode does not resolve your issue, the board must be completely erased and

CircuitPython must be reloaded onto the board.

You WILL lose everything on the board when you complete the following steps. If

possible, make a copy of your code before continuing.

©Adafruit Industries Page 106 of 130

To erase CIRCUITPY: storage.erase_filesystem()

CircuitPython includes a built-in function to erase and reformat the filesystem. If you

have a version of CircuitPython older than 2.3.0 on your board, you can update to the

newest version (https://adafru.it/Amd) to do this.

Connect to the CircuitPython REPL (https://adafru.it/Bec) using Mu or a terminal

program.

Type the following into the REPL:

>>> import storage

>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Erase CIRCUITPY Without Access to the REPL

If you can't access the REPL, or you're running a version of CircuitPython previous to

2.3.0 and you don't want to upgrade, there are options available for some specific

boards.

The options listed below are considered to be the "old way" of erasing your board.

The method shown above using the REPL is highly recommended as the best method

for erasing your board.

For the specific boards listed below:

If the board you are trying to erase is listed below, follow the steps to use the file to

erase your board.

 1. Download the correct erase file:

Circuit Playground Express

https://adafru.it/AdI

Feather M0 Express

1.

2.

If at all possible, it is recommended to use the REPL to erase your CIRCUITPY

drive. The REPL method is explained above.

©Adafruit Industries Page 107 of 130

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098

https://adafru.it/AdJ

Feather M4 Express

https://adafru.it/EVK

Metro M0 Express

https://adafru.it/AdK

Metro M4 Express QSPI Eraser

https://adafru.it/EoM

Trellis M4 Express (QSPI)

https://adafru.it/DjD

Grand Central M4 Express (QSPI)

https://adafru.it/DBA

PyPortal M4 Express (QSPI)

https://adafru.it/Eca

Circuit Playground Bluefruit (QSPI)

https://adafru.it/Gnc

Monster M4SK (QSPI)

https://adafru.it/GAN

PyBadge/PyGamer QSPI Eraser.UF2

https://adafru.it/GAO

CLUE_Flash_Erase.UF2

https://adafru.it/Jat

Matrix_Portal_M4_(QSPI).UF2

https://adafru.it/Q5B

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

©Adafruit Industries Page 108 of 130

https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613
https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%28QSPI%29.UF2?1611076081

 4. The status LED will turn yellow or blue, indicating the erase has started.

 5. After approximately 15 seconds, the status LED will light up green. On the

NeoTrellis M4 this is the first NeoPixel on the grid

 6. Double-click the reset button on the board to bring up the boardnameBOOT d

rive.

 7. Drag the appropriate latest release of CircuitPython (https://adafru.it/Em8) .uf2

file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps

starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (https://adafru.it/Amd). You'll also need to load your

code and reinstall your libraries!

For SAMD21 non-Express boards that have a UF2

bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that have a UF2

bootloader include Trinket M0, GEMMA M0, QT Py M0, and the SAMD21-based

Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps to erase

your board.

 1. Download the erase file:

SAMD21 non-Express Boards

https://adafru.it/VB-

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The boot LED will start flashing again, and the boardnameBOOT drive will

reappear.

 5. Drag the appropriate latest release CircuitPython (https://adafru.it/Em8) .uf2

file to the boardnameBOOT drive.

©Adafruit Industries Page 109 of 130

https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2
https://circuitpython.org/downloads

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (https://adafru.it/Amd) YYou'll also need to load your

code and reinstall your libraries!

For SAMD21 non-Express boards that do not have a UF2

bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that do not have a

UF2 bootloader include the Feather M0 Basic Proto, Feather Adalogger, or the

Arduino Zero.

If you are trying to erase a non-Express board that does not have a UF2 bootloader, f

ollow these directions to reload CircuitPython using bossac (https://adafru.it/Bed),

which will erase and re-create CIRCUITPY.

Running Out of File Space on SAMD21 Non-

Express Boards

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. This includes boards like the Trinket M0,

GEMMA M0, QT Py M0, and the SAMD21-based Trinkey boards.

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its

likely you'll run out of space but don't panic! There are a number of ways to free up

space.

©Adafruit Industries Page 110 of 130

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there

are libraries in the lib folder that you aren't using anymore or test code that isn't in

use. Don't delete the lib folder completely, though, just remove what you don't need.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you

don't need it or have already installed it. It's ~12KiB or so.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the

recommendation is to indent code with four spaces for every indent. In general, that

is recommended too. However, one trick to storing more human-readable code is to

use a single tab character for indentation. This approach uses 1/4 of the space for

indentation and can be significant when you're counting bytes.

On MacOS?

MacOS loves to generate hidden files. Luckily you can disable some of the extra

hidden files that macOS adds by running a few commands to disable search indexing

and create zero byte placeholders. Follow the steps below to maximize the amount of

space available on macOS.

Prevent & Remove MacOS Hidden Files

First find the volume name for your board. With the board plugged in run this

command in a terminal to list all the volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full

path to the volume is the /Volumes/CIRCUITPY path.

Now follow the steps from this question (https://adafru.it/u1c) to run these terminal

commands that stop hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY

cd /Volumes/CIRCUITPY

rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}

©Adafruit Industries Page 111 of 130

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

mkdir .fseventsd

touch .fseventsd/no_log .metadata_never_index .Trashes

cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your

board's volume if it's different. At this point all the hidden files should be cleared from

the board and some hidden files will be prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders

mentioned above will be created automatically if you erase and reformat the

filesystem. WARNING: Save your files first! Do this in the REPL:

>>> import storage

>>> storage.erase_filesystem()

However there are still some cases where hidden files will be created by MacOS. In

particular if you copy a file that was downloaded from the internet it will have special

metadata that MacOS stores as a hidden file. Luckily you can run a copy command

from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on macOS

you need to be careful to copy files to the board with a special command that

prevents future hidden files from being created. Unfortunately you cannot use drag

and drop copy in Finder because it will still create these hidden extended attribute

files in some cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For

example to copy a file_name.mpy file to the board use a command like:

cp -X file_name.mpy /Volumes/CIRCUITPY

(Replace file_name.mpy with the name of the file you want to copy.)

Or to copy a folder and all of the files and folders contained within, use a command

like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

©Adafruit Industries Page 112 of 130

If you are copying to the lib folder, or another folder, make sure it exists before

copying.

if lib does not exist, you'll create a file named lib !

cp -X file_name.mpy /Volumes/CIRCUITPY/lib

This is safer, and will complain if a lib folder does not exist.

cp -X file_name.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden

files here's how to do so. First, move into the Volumes/ directory with cd /Volumes/ ,

and then list the amount of space used on the CIRCUITPY drive with the df

command.

That's not very much space left! The next step is to show a list of the files currently on

the CIRCUITPY drive, including the hidden files, using the ls command. You cannot

use Finder to do this, you must do it via command line!

There are a few of the hidden files that MacOS loves to generate, all of which begin

with a ._ before the file name. Remove the ._ files using the rm command. You can

remove them all once by running rm CIRCUITPY/._* . The * acts as a wildcard to

apply the command to everything that begins with ._ at the same time.

Finally, you can run df again to see the current space used.

©Adafruit Industries Page 113 of 130

Nice! You have 12Ki more than before! This space can now be used for libraries and

code!

Device Locked Up or Boot Looping

In rare cases, it may happen that something in your code.py or boot.py files causes

the device to get locked up, or even go into a boot loop. A boot loop occurs when the

board reboots repeatedly and never fully loads. These are not caused by your

everyday Python exceptions, typically it's the result of a deeper problem within

CircuitPython. In this situation, it can be difficult to recover your device if CIRCUITPY

is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery

option. When the device boots up in safe mode it will not run the code.py or boot.py

scripts, but will still connect the CIRCUITPY drive so that you can remove or modify

those files as needed.

The method used to manually enter safe mode can be different for different devices.

It is also very similar to the method used for getting into bootloader mode, which is a

different thing. So it can take a few tries to get the timing right. If you end up in

bootloader mode, no problem, you can try again without needing to do anything else.

For most devices:

Press the reset button, and then when the RGB status LED blinks yellow, press the

reset button again. Since your reaction time may not be that fast, try a "slow" double

click, to catch the yellow LED on the second click.

For ESP32-S2 based devices:

Press and release the reset button, then press and release the boot button about 3/4

of a second later.

Refer to the diagrams above for boot sequence details.

"Uninstalling" CircuitPython

A lot of our boards can be used with multiple programming languages. For example,

the Circuit Playground Express can be used with MakeCode, Code.org CS

Discoveries, CircuitPython and Arduino.

©Adafruit Industries Page 114 of 130

Maybe you tried CircuitPython and want to go back to MakeCode or Arduino? Not a

problem. You can always remove or reinstall CircuitPython whenever you want! Heck,

you can change your mind every day!

There is nothing to uninstall. CircuitPython is "just another program" that is loaded

onto your board. You simply load another program (Arduino or MakeCode) and it will

overwrite CircuitPython.

Backup Your Code

Before replacing CircuitPython, don't forget to make a backup of the code you have

on the CIRCUITPY drive. That means your code.py any other files, the lib folder etc.

You may lose these files when you remove CircuitPython, so backups are key! Just

drag the files to a folder on your laptop or desktop computer like you would with any

USB drive.

Moving Circuit Playground Express to

MakeCode

On the Circuit Playground Express (this currently does NOT apply to Circuit

Playground Bluefruit), if you want to go back to using MakeCode, it's really easy. Visit

makecode.adafruit.com (https://adafru.it/wpC) and find the program you want to

upload. Click Download to download the .uf2 file that is generated by MakeCode.

Now double-click your CircuitPython board until you see the onboard LED(s) turn

green and the ...BOOT directory shows up.

©Adafruit Industries Page 115 of 130

https://makecode.adafruit.com

Then find the downloaded MakeCode .uf2 file and drag it to the CPLAYBOOT drive.

Your MakeCode is now running and CircuitPython has been removed. Going forward

you only have to single click the reset button to get to CPLAYBOOT. This is an

idiosyncrasy of MakeCode.

Moving to Arduino

If you want to use Arduino instead, you just use the Arduino IDE to load an Arduino

program. Here's an example of uploading a simple "Blink" Arduino program, but you

don't have to use this particular program.

Start by plugging in your board, and double-clicking reset until you get the green

onboard LED(s).

©Adafruit Industries Page 116 of 130

Within Arduino IDE, select the matching board, say Circuit Playground Express.

Select the correct matching Port:

Create a new simple Blink sketch example:

// the setup function runs once when you press reset or power the board

void setup() {

 // initialize digital pin 13 as an output.

 pinMode(13, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

Make sure the LED(s) are still green, then click Upload to upload Blink. Once it has

uploaded successfully, the serial Port will change so re-select the new Port!

Once Blink is uploaded you should no longer need to double-click to enter

bootloader mode. Arduino will automatically reset when you upload.

©Adafruit Industries Page 117 of 130

CircuitPython Essentials

CircuitPython Essentials (https://adafru.it/Bfr)

Clue Library Documentation

Clue Library Documentation (https://adafru.it/Ka-)

CLUE CircuitPython Demos

The Adafruit CLUE is packed with tons of sensor and inputs. You can use these in

many combinations to create all kinds of fun projects. We've included a series of

CircuitPython demos for the CLUE to get you started. Take a look!

(For the high-level CLUE library, check out the docs here (https://adafru.it/Ka-).)

CLUE Spirit Level

The Adafruit CLUE comes with a built in accelerometer for measuring acceleration.

For more information on how that works, check out Wikipedia (https://adafru.it/J2d).

Remember that you must have the necessary libraries installed. Verify that your lib

folder matches the list found on the CLUE CircuitPython Libraries page (https://

adafru.it/Jb9) before continuing.

Using CircuitPython, we can create a spirit level using generated shapes and the

accelerometer data. This example generates circles as guide lines and and outline,

©Adafruit Industries Page 118 of 130

https://learn.adafruit.com/circuitpython-essentials
https://circuitpython.readthedocs.io/projects/clue/en/latest/api.html
https://circuitpython.readthedocs.io/projects/clue/en/latest/api.html
https://en.wikipedia.org/wiki/Accelerometer
https://learn.adafruit.com/adafruit-clue/clue-circuitpython-libraries

and a dot as the "bubble". Move the board around to watch the bubble "float" to the

top!

SPDX-FileCopyrightText: 2019 Kattni Rembor, written for Adafruit Industries

#

SPDX-License-Identifier: Unlicense

"""CLUE Spirit Level Demo"""

import board

import displayio

from adafruit_display_shapes.circle import Circle

from adafruit_clue import clue

display = board.DISPLAY

clue_group = displayio.Group()

outer_circle = Circle(120, 120, 119, outline=clue.WHITE)

middle_circle = Circle(120, 120, 75, outline=clue.YELLOW)

inner_circle = Circle(120, 120, 35, outline=clue.GREEN)

clue_group.append(outer_circle)

clue_group.append(middle_circle)

clue_group.append(inner_circle)

x, y, _ = clue.acceleration

bubble_group = displayio.Group()

level_bubble = Circle(int(x + 120), int(y + 120), 20, fill=clue.RED,

outline=clue.RED)

bubble_group.append(level_bubble)

clue_group.append(bubble_group)

display.show(clue_group)

while True:

 x, y, _ = clue.acceleration

 bubble_group.x = int(x * -10)

 bubble_group.y = int(y * -10)

Let's take a look at the code.

First, we import the necessary libraries and modules. Then we create the display

object for later use.

©Adafruit Industries Page 119 of 130

Next we create the clue_group that will hold all of the objects we plan to display.

Then we create our outline and guide lines, and add them to the group.

Next we get the initial acceleration values. For this, we only care about x and y, but as

acceleration is an x, y, z value, we must unpack three values from it. The _ takes

the place of z which we never use.

Then we create the bubble_group to hold the bubble. With the circles, as they are

static, we could simply append them into a group. The bubble needs to move, so it

must be in its own group that we will add to the same group as the circles once

created. Next we create the level bubble. Instead of a hard coded initial location, its

initial location is based on the initial x, y value that we obtained. Then we add the

bubble to the bubble group.

Finally, we add the bubble_group to the clue_group , and tell the display to show

() everything contained within, which is all of the shapes we created.

Inside the loop, we get an updated x, y value. Since it is in the loop, it will continue to

update. Then we set the bubble_group x and y locations to be the constantly

updating x and y values from the accelerometer. We multiply them by -10 for two

reasons. The multiplication by 10 is to extend the values to utilise the entire display -

when moving slowly, x and y values are approximately -10 to 10, so without the

multiplication, the dot would move in a small space in the center of the display. The

negative is to cause the bubble to move "upwards" like an actual level bubble would,

opposite the direction it would otherwise move based on the actual x and y values.

That's what goes into making a spirit level with CircuitPython and CLUE!

CLUE Temperature and Humidity Monitor

©Adafruit Industries Page 120 of 130

The Adafruit CLUE has a temperature and humidity sensor that reads the temperature

in degrees Celsius and the relative humidity in percent. To learn more about relative

humidity, check Wikipedia (https://adafru.it/CxM).

With CircuitPython, it's easy to build a color-coded temperature and humidity monitor

with customisable ranges and an optional audible alarm. Set the min and max

temperature and humidity, optionally enable the audible alarm and you're all set to

know when your environment is outside your comfort zone!

Remember that you must have the necessary libraries installed. Verify that your lib

folder matches the list found on the CLUE CircuitPython Libraries page (https://

adafru.it/Jb9) before continuing.

You'll want to set the min_temperature and max_temperature to your desired

range in degrees Celsius, and the min_humidity and max_humidity to your

desired range in percent. If you want the alarm to sound when the temperature or

humidity is outside the specified range, enable it by setting alarm_enable = True .

Then everything is ready to go!

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""Monitor customisable temperature and humidity ranges, with an optional audible

alarm tone."""

from adafruit_clue import clue

Set desired temperature range in degrees Celsius.

min_temperature = 24

max_temperature = 30

Set desired humidity range in percent.

min_humidity = 20

max_humidity = 65

Set to true to enable audible alarm tone.

alarm_enable = False

clue_display = clue.simple_text_display(text_scale=3, colors=(clue.WHITE,))

clue_display[0].text = "Temperature &"

clue_display[1].text = "Humidity"

while True:

 alarm = False

 temperature = clue.temperature

 humidity = clue.humidity

 clue_display[3].text = "Temp: {:.1f} C".format(temperature)

 clue_display[5].text = "Humi: {:.1f} %".format(humidity)

 if temperature < min_temperature:

 clue_display[3].color = clue.BLUE

 alarm = True

 elif temperature > max_temperature:

 clue_display[3].color = clue.RED

©Adafruit Industries Page 121 of 130

https://en.wikipedia.org/wiki/Relative_humidity
https://learn.adafruit.com/adafruit-clue/clue-circuitpython-libraries

 alarm = True

 else:

 clue_display[3].color = clue.WHITE

 if humidity < min_humidity:

 clue_display[5].color = clue.BLUE

 alarm = True

 elif humidity > max_humidity:

 clue_display[5].color = clue.RED

 alarm = True

 else:

 clue_display[5].color = clue.WHITE

 clue_display.show()

 if alarm and alarm_enable:

 clue.start_tone(2000)

 else:

 clue.stop_tone()

Let's take a look at the code.

First you set the temperature and humidity ranges that you'd like to monitor, and

optionally enable the audible alarm. Next you set up the text display to prepare to add

the lines of text. We scale it to 3 and set the initial color of all the text white.

Note that colors expects a tuple. Tuples in Python come in parentheses () with

comma separators. If you have two values, a tuple would look like (1.0, 3.14)

Since we have only one value, we need to have it print out like (1.0,) note the

parentheses around the number, and the comma after the number. Therefore if you

are only providing a single color for all lines of text, you must include the extra comma

after the single color to make it a single member tuple, e.g. colors=(clue.WHITE,) .

Then we add the first two lines of text which are the title.

Inside the loop, we set the alarm variable to False. We'll use this variable throughout

the program to determine whether the alarm should be going off. Next, we create a

variable to hold the temperature data, and one to hold the humidity data. Then we

create the next two lines of text to show the temperature and humidity data. Notice

that we skip line 2 and line 4 - this is a feature to allow you to space out text on the

display without creating empty lines.

Now we have two if blocks that look very similar, one for temperature and one for

humidity. First we check to see if the temperature is less than the earlier-set minimum

temperature, and if it is, we change the text to blue and set alarm to True. Then we

check to see if the temperature is greater than the earlier-set maximum temperature,

and if it is, change the text to red and set alarm to True. Otherwise, we keep the text

white. Then we repeat the same steps for humidity.

©Adafruit Industries Page 122 of 130

Finally, we have one last if block. This block checks to see if BOTH alarm and alar

m_enable are True. If so, play a 2000Hz tone which functions as the audible alarm.

Otherwise, no tone is played.

That's what goes into making a temperature and humidity monitor using CircuitPython

and CLUE!

CLUE Height Calculator

The Adafruit CLUE has a barometric pressure sensor that uses the pressure readings

to calculate altitude. For more information on how this works, check out Wikipedia (ht

tps://adafru.it/J2e).

Note: The temperature will read higher than ambient temperature because of the

backlight on the CLUE display.

©Adafruit Industries Page 123 of 130

https://en.wikipedia.org/wiki/Atmospheric_pressure

With CircuitPython and a little math, it is possible to use the altitude reading to

calculate the height of an object using your CLUE! Start with the CLUE at the bottom

of the object, and press button A to set the initial reading, and then lift your CLUE up

to the top of the object to get your reading.

Remember that you must have the necessary libraries installed. Verify that your lib

folder matches the list found on the CLUE CircuitPython Libraries page (https://

adafru.it/Jb9) before continuing.

To get the most accurate altitude reading, you'll want to find out the sea level

pressure at your location. A google search should provide you with a number of

options. Make sure you convert the results to hPa. Then set clue.sea_level_press

ure = to the sea level pressure at your location in hPa.

SPDX-FileCopyrightText: 2019 Kattni Rembor, written for Adafruit Industries

#

SPDX-License-Identifier: Unlicense

"""Calculate the height of an object. Press button A to reset initial height and

then lift the

CLUE to find the height."""

from adafruit_clue import clue

Set to the sea level pressure in hPa at your location for the most accurate

altitude measurement.

clue.sea_level_pressure = 1015

clue_display = clue.simple_text_display(

 text_scale=2,

 colors=(clue.CYAN, 0, clue.RED, clue.RED, 0, clue.YELLOW, 0, clue.GREEN),

)

initial_height = clue.altitude

clue_display[0].text = "Calculate height!"

clue_display[2].text = "Press A to reset"

clue_display[3].text = "initial height!"

while True:

 if clue.button_a:

 initial_height = clue.altitude

 clue.pixel.fill(clue.RED)

 else:

 clue.pixel.fill(0)

 clue_display[5].text = "Altitude: {:.1f} m".format(clue.altitude)

 clue_display[7].text = "Height: {:.1f} m".format(clue.altitude - initial_height)

 clue_display.show()

Let's take a look at the code.

First you set the sea level pressure at your location. Then you set up the text display

to prepare to add your lines of text. Note that we don't use every line, so to set the

colors on only the lines we used, we include a 0 as the color for the unused lines -

this is easier and cleaner than setting them to a color! Then we get an initial height

©Adafruit Industries Page 124 of 130

https://learn.adafruit.com/adafruit-clue/clue-circuitpython-libraries

reading. The first three lines of text on the display are not dynamic in any way and can

be set outside the loop.

Inside the loop, we check to see if button A is pressed, and if it is, we reset the initial

height reading to the current altitude reading. This allows for you to reset the initial

height reading while the program is running. As well, we turn the NeoPixel LED on the

back of the board red when button A is pressed, otherwise we turn it off. Then we

display the current altitude.

This is followed by the current height which is the change in altitude from the initial

height reading, which is to say, our simple math: altitude - initial_height .

Then we call show() to make all of it show up on the display.

That's all there is to creating a height calculator with CircuitPython and CLUE!

CLUE Slideshow

The Adafruit CLUE comes with built in buttons and a display. Using CircuitPython, the

Adafruit CircuitPython CLUE and Adafruit CircuitPython Slideshow libraries, and the

built in buttons and display, we can easily make an interactive slideshow.

Blinka Bitmaps

First, you'll need to load some compatible bitmap files onto your CIRCUITPY drive.

We've included three compatible bitmaps below to get you started. For information on

how to create your own compatible bitmaps, check out the Customization section of

the Notifcation Icons page in this guide (https://adafru.it/Jfo).

©Adafruit Industries Page 125 of 130

https://learn.adafruit.com/ancs-gizmo/notification-icons#customization-5-21
https://learn.adafruit.com/ancs-gizmo/notification-icons#customization-5-21

CircuitPython Libraries

Remember that you must have the necessary libraries installed. Verify that your lib

folder matches the list found on the CLUE CircuitPython Libraries page (https://

adafru.it/Jb9) before continuing.

©Adafruit Industries Page 126 of 130

https://learn.adafruit.com/adafruit-clue/clue-circuitpython-libraries

CLUE Slideshow Example

Once the code and bitmaps are loaded, try pressing button B to move forward

through displaying the images, and button A to move backward through displaying

the images!

SPDX-FileCopyrightText: 2019 Kattni Rembor, written for Adafruit Industries

#

SPDX-License-Identifier: Unlicense

"""Display a series of bitmaps using the buttons to advance through the list. To

use: place

supported bitmap files on your CIRCUITPY drive, then press the buttons on your CLUE

to advance

through them.

Requires the Adafruit CircuitPython Slideshow library!"""

from adafruit_slideshow import SlideShow, PlayBackDirection

from adafruit_clue import clue

slideshow = SlideShow(clue.display, auto_advance=False)

while True:

 if clue.button_b:

 slideshow.direction = PlayBackDirection.FORWARD

 slideshow.advance()

 if clue.button_a:

 slideshow.direction = PlayBackDirection.BACKWARD

 slideshow.advance()

Let's take a look at the code.

First we import the CLUE library and the parts of the Slideshow library we intend to

use: SlideShow and PlayBackDirection .

©Adafruit Industries Page 127 of 130

Then we create the slideshow. To create the slideshow, you must provide it the

display object (clue.display). For this example, we've also set auto_advance=Fa

lse . We don't want it to auto advance because we'll be using the buttons to advance

through the images.

Inside the loop, we check for when each button is pressed. When button B is pressed,

we set the playback direction to FORWARD and advance one image. When button A

is pressed, we set the playback direction to BACKWARD, and advance one image.

That's all there is to creating a slideshow on your Adafruit CLUE using CircuitPython!

Downloads

Files:

General nRF52840 Product Specification (https://adafru.it/Dvt)

CLUE nRF52840 module: Raytac MDBT50Q details (https://adafru.it/Dvu)

PDM mic: MP34DT01-M datasheet (https://adafru.it/CiZ)

Humidity sensor: SHT3x-DIS dataheet (https://adafru.it/k6a)

Temperature and Barometric Pressure sensor: BMP280 datasheet (https://

adafru.it/fIO)

Proximity, Light, Gesture, Color sensor: APDS9960 datasheet (https://adafru.it/

z0c)

Gyroscope and Accelerometer: LSM6DS33 Datasheet (https://adafru.it/Iqf)

Magnetometer: LIS3MDL Datasheet (https://adafru.it/IbR)

Fritzing object in the Adafruit Fritzing Library (https://adafru.it/ISc)

EagleCAD files on GitHub (https://adafru.it/ISd)

3D Models on GitHub (https://adafru.it/ISe)

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 128 of 130

https://cdn-learn.adafruit.com/assets/assets/000/068/543/original/nRF52840_PS_v1.0.pdf?1546346648
https://cdn-learn.adafruit.com/assets/assets/000/068/544/original/Raytac_MDBT50Q.pdf?1546346679
https://cdn-learn.adafruit.com/assets/assets/000/049/977/original/MP34DT01-M.pdf
http://adafruit.com/images/product-files/2857/Sensirion_Humidity_SHT3x_Datasheet_digital-767294.pdf
http://www.adafruit.com/datasheets/BST-BMP280-DS001-11.pdf
https://cdn-learn.adafruit.com/assets/assets/000/045/848/original/Avago-APDS-9960-datasheet.pdf?1504034182
https://www.st.com/resource/en/datasheet/lsm6ds33.pdf
https://www.st.com/resource/en/datasheet/lis3mdl.pdf
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20nRF52840%20CLUE.fzpz
https://github.com/adafruit/Adafruit-CLUE-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/master/4500%20CLUE%20nRF52840

Schematic

©Adafruit Industries Page 129 of 130

Fab Print

©Adafruit Industries Page 130 of 130

	Introducing Adafruit CLUE
	Table of Contents
	Overview
	Pinouts
	Powering Your CLUE
	HELP! Accel/Gyro Not Working?
	Arduino Support Setup
	Arduino Board Testing
	Arcada Libraries
	Sensor Libraries
	Arduino Test
	Animated GIF Player
	Arduino Bluefruit nRF52 API
	Arduino BLE Examples
	CircuitPython on CLUE
	CLUE CircuitPython Libraries
	Getting Started with BLE and CircuitPython
	Installing the Mu Editor
	Creating and Editing Code
	Connecting to the Serial Console
	Interacting with the Serial Console
	The REPL
	CircuitPython Libraries
	CircuitPython Pins and Modules
	Advanced Serial Console on Mac
	Advanced Serial Console on Windows
	Welcome to the Community!
	Frequently Asked Questions
	Troubleshooting
	"Uninstalling" CircuitPython
	CircuitPython Essentials
	Clue Library Documentation
	CLUE CircuitPython Demos
	CLUE Spirit Level
	CLUE Temperature and Humidity Monitor
	CLUE Height Calculator
	CLUE Slideshow
	Downloads

	Overview
	Pinouts
	Microcontroller and QSPI
	Display
	Sensors
	USB and Battery
	Buttons
	STEMMA QT
	LEDs
	GPIO and Power Pads
	Edge Connector
	Debug Pads

	Powering Your CLUE
	micro:bit Power
	CLUE Power
	HELP! Accel/Gyro Not Working?
	Arduino Support Setup
	1. BSP Installation
	Recommended: Installing the BSP via the Board Manager

	2. LINUX ONLY: adafruit-nrfutil Tool Installation
	3. Update the bootloader (nRF52832 ONLY)
	Advanced Option: Manually Install the BSP via 'git'
	Adafruit nRF52 BSP via git (for core development and PRs only)

	Arduino Board Testing
	1. Select the Board Target
	2. Select the USB CDC Serial Port
	Download & Install CP2104 Driver (nRF52832)
	Download & Install Adafruit Driver (nRF52840 Windows)

	3. Update the bootloader (nRF52832 Feather Only)
	4. Run a Test Sketch
	If Arduino failed to upload sketch to the Feather
	If you get this error:

	On Linux I'm getting 'arm-none-eabi-g++: no such file or directory', even though 'arm-none-eabi-g++' exists in the path specified. What should I do?

	Arcada Libraries
	Install Libraries
	Adafruit Arcada
	If you aren't running Arduino IDE 1.8.10 or later, you'll need to install all of the following!
	Adafruit NeoPixel

	Adafruit FreeTouch
	Adafruit Touchscreen
	Adafruit SPIFlash
	Adafruit Zero DMA
	Adafruit GFX
	Adafruit ST7735
	Adafruit ILI9341
	Adafruit LIS3DH
	Adafruit Sensor

	Adafruit ImageReader
	ArduinoJson
	Adafruit ZeroTimer
	Adafruit TinyUSB
	Adafruit WavePlayer
	SdFat (Adafruit Fork)

	Audio - Adafruit Fork
	Sensor Libraries
	Adafruit Sensor Lab
	If you aren't running Arduino IDE 1.8.10 or later, you'll need to install all of the following!
	Adafruit Unified Sensor
	Adafruit ADXL343
	Adafruit APDS9660
	Adafruit BMP280
	Adafruit BME280
	Adafruit DPS310
	Adafruit LIS2MDL
	Adafruit LIS3MDL
	Adafruit LSM6DS
	Adafruit MSA301
	Adafruit SHT31
	Adafruit AHRS & Adafruit Sensor Calibration

	Arduino Test
	Animated GIF Player
	Arduino Bluefruit nRF52 API
	Arduino BLE Examples
	CircuitPython on CLUE
	Set up CircuitPython Quick Start!

	CLUE CircuitPython Libraries
	Installing CircuitPython Libraries on your CLUE
	Getting Started with BLE and CircuitPython
	Guides
	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.
	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing

	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!
	Back to Editing Code...

	Naming Your Program File
	Connecting to the Serial Console
	Are you using Mu?
	Serial Console Issues or Delays on Linux
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Entering the REPL
	Interacting with the REPL

	Returning to the Serial Console
	CircuitPython Libraries
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle
	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle
	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board
	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples

	CircuitPython Pins and Modules
	CircuitPython Pins
	import board
	I2C, SPI, and UART
	What Are All the Available Names?
	Microcontroller Pin Names

	CircuitPython Built-In Modules
	Advanced Serial Console on Mac
	What's the Port?
	Connect with screen

	Advanced Serial Console on Windows
	Windows 7 and 8.1
	What's the COM?
	Install Putty
	Welcome to the Community!
	Adafruit Discord
	CircuitPython.org
	Pull Requests
	Open Issues
	Library Infrastructure Issues
	CircuitPython Localization

	Adafruit GitHub
	Adafruit Forums
	Read the Docs

	Frequently Asked Questions
	I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	How do I connect to the Internet with CircuitPython?
	Is there asyncio support in CircuitPython?
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	What is a MemoryError?
	MemoryError?"> What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Does CircuitPython support interrupts?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?
	Commonly Used Acronyms

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

	Bootloader (boardnameBOOT) Drive Not Present
	You may have a different board.
	MakeCode
	MacOS
	Windows 10
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear
	Device Errors or Problems on Windows
	Serial Console in Mu Not Displaying Anything
	CircuitPython RGB Status Light
	CircuitPython 7.0.0 and Later
	CircuitPython 6.3.0 and earlier

	Serial console showing ValueError: Incompatible .mpy file
	CIRCUITPY Drive Issues
	Safe Mode
	Entering Safe Mode in CircuitPython 7.x
	Entering Safe Mode in CircuitPython 6.x
	In Safe Mode

	To erase CIRCUITPY: storage.erase_filesystem()
	Erase CIRCUITPY Without Access to the REPL
	For the specific boards listed below:
	For SAMD21 non-Express boards that have a UF2 bootloader:
	For SAMD21 non-Express boards that do not have a UF2 bootloader:

	Running Out of File Space on SAMD21 Non-Express Boards
	Delete something!
	Use tabs
	On MacOS?
	Prevent & Remove MacOS Hidden Files
	Copy Files on MacOS Without Creating Hidden Files
	Other MacOS Space-Saving Tips

	Device Locked Up or Boot Looping
	"Uninstalling" CircuitPython
	Backup Your Code

	Moving Circuit Playground Express to MakeCode
	Moving to Arduino
	CircuitPython Essentials
	Clue Library Documentation
	CLUE CircuitPython Demos
	CLUE Spirit Level
	CLUE Temperature and Humidity Monitor
	CLUE Height Calculator
	CLUE Slideshow
	Blinka Bitmaps
	CircuitPython Libraries
	CLUE Slideshow Example

	Downloads
	Schematic
	Fab Print

