

Adafruit 128x64 OLED Bonnet for

Raspberry Pi

Created by lady ada

https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi

Last updated on 2021-11-15 06:56:56 PM EST

©Adafruit Industries Page 1 of 15

3

5

5

6

6

9

10

11

13

14

14

Table of Contents

Overview

Usage

• Install CircuitPython

• Enable I2C

• Verify I2C Device

• Running Scripts on Boot

• Library Usage

• Pin Setup

• Speeding up the Display

Downloads

• Schematic & Fabrication Print

©Adafruit Industries Page 2 of 15

Overview

If you'd like a compact display, with buttons and a joystick - we've got what you're

looking for. The Adafruit 128x64 OLED Bonnet for Raspberry Pi is the big sister to our

mini PiOLED add-on (https://adafru.it/wVd). This version has 128x64 pixels (instead of

128x32) and a much larger screen besides. With the OLED display in the center, we

had some space on either side so we added a 5-way joystick and two pushbuttons.

Great for when you want to have a control interface for your project.

©Adafruit Industries Page 3 of 15

https://www.adafruit.com/product/3527
https://www.adafruit.com/product/3527

These displays are small, only about 1.3" diagonal, but very readable due to the high

contrast of an OLED display. This screen is made of 128x64 individual white OLED

pixels and because the display makes its own light, no backlight is required. This

reduces the power required to run the OLED and is why the display has such high

contrast; we really like this miniature display for its crispness!

Please note that this display is too small to act as a primary display for the Pi (e.g. it

can't act like or display what would normally be on the HDMI screen). Instead, we

recommend using pygame for drawing or writing text.

Using the display and controls in python is very easy, we have a library ready-to-go

for the SSD1306 OLED chipset and the joystick/buttons are connected to GPIO pins

on the Pi. Our example code allows you to draw images, text, whatever you like, using

the Python imaging library. We also have example code for using the joystick/buttons

/OLED together. Our tests showed 15 FPS update rates once you bump the I2C speed

to 1MHz, so you can do animations or simple video.

©Adafruit Industries Page 4 of 15

Comes completely pre-assembled and tested so you don't need to do anything but

plug it in and install our Python code! Works with any Raspberry Pi computer,

including the original Pi 1, B+, Pi 2, Pi 3 and Pi Zero.

Usage

Install CircuitPython

This guide assumes that you've gotten your Raspberry Pi up and running, and have

CircuitPython installed. If not, check out the guide:

CircuitPython Installation Guide

https://adafru.it/Deo

To install the library for the Pi OLED (https://adafru.it/u1f), enter the following into the

terminal:

sudo pip3 install adafruit-circuitpython-ssd1306

If that complains about pip3 not being installed, then run this first to install it:

This guide assumes you have your Raspberry Pi all set up with an operating

system, network connectivity and SSH!

©Adafruit Industries Page 5 of 15

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306

sudo apt-get install python3-pip

We also need PIL to allow using text with custom fonts. There are several system

libraries that PIL relies on, so installing via a package manager is the easiest way to

bring in everything:

sudo apt-get install python3-pil

Enable I2C

To enable i2c, you can follow our detailed guide on configuring the Pi with I2C

support here. (https://adafru.it/dEO)

You also need to install Blinka support as detailed here (https://adafru.it/Deo)

After you've enabled I2C you will need to shutdown with sudo shutdown -h now

Once the Pi has halted, plug in the PiOLED. Now you can power the Pi back up, and

log back in. Run the following command from a terminal prompt to scan/detect the

I2C devices

sudo i2cdetect -y 1

You should see the following, indicating that address 0x3c (the OLED display) was

found

Verify I2C Device

You can run our buttons example, which will let you press various buttons and see

them mimicked on the OLED.

©Adafruit Industries Page 6 of 15

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi#enable-i2c-and-spi-3-5

Create a new file with nano ~pi/bonnet_buttons.py and paste this code below in!

Then save it.

SPDX-FileCopyrightText: 2017 James DeVito for Adafruit Industries

SPDX-License-Identifier: MIT

This example is for use on (Linux) computers that are using CPython with

Adafruit Blinka to support CircuitPython libraries. CircuitPython does

not support PIL/pillow (python imaging library)!

import board

import busio

from digitalio import DigitalInOut, Direction, Pull

from PIL import Image, ImageDraw

import adafruit_ssd1306

Create the I2C interface.

i2c = busio.I2C(board.SCL, board.SDA)

Create the SSD1306 OLED class.

disp = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)

Input pins:

button_A = DigitalInOut(board.D5)

button_A.direction = Direction.INPUT

button_A.pull = Pull.UP

button_B = DigitalInOut(board.D6)

button_B.direction = Direction.INPUT

button_B.pull = Pull.UP

button_L = DigitalInOut(board.D27)

button_L.direction = Direction.INPUT

button_L.pull = Pull.UP

button_R = DigitalInOut(board.D23)

button_R.direction = Direction.INPUT

button_R.pull = Pull.UP

button_U = DigitalInOut(board.D17)

button_U.direction = Direction.INPUT

button_U.pull = Pull.UP

button_D = DigitalInOut(board.D22)

button_D.direction = Direction.INPUT

button_D.pull = Pull.UP

button_C = DigitalInOut(board.D4)

button_C.direction = Direction.INPUT

button_C.pull = Pull.UP

Clear display.

disp.fill(0)

disp.show()

Create blank image for drawing.

Make sure to create image with mode '1' for 1-bit color.

width = disp.width

height = disp.height

image = Image.new("1", (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.

©Adafruit Industries Page 7 of 15

draw.rectangle((0, 0, width, height), outline=0, fill=0)

while True:

 if button_U.value: # button is released

 draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=0) # Up

 else: # button is pressed:

 draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=1) # Up

filled

 if button_L.value: # button is released

 draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=0) # left

 else: # button is pressed:

 draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=1) # left

filled

 if button_R.value: # button is released

 draw.polygon([(60, 30), (42, 21), (42, 41)], outline=255, fill=0) # right

 else: # button is pressed:

 draw.polygon(

 [(60, 30), (42, 21), (42, 41)], outline=255, fill=1

) # right filled

 if button_D.value: # button is released

 draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=0) # down

 else: # button is pressed:

 draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=1) # down

filled

 if button_C.value: # button is released

 draw.rectangle((20, 22, 40, 40), outline=255, fill=0) # center

 else: # button is pressed:

 draw.rectangle((20, 22, 40, 40), outline=255, fill=1) # center filled

 if button_A.value: # button is released

 draw.ellipse((70, 40, 90, 60), outline=255, fill=0) # A button

 else: # button is pressed:

 draw.ellipse((70, 40, 90, 60), outline=255, fill=1) # A button filled

 if button_B.value: # button is released

 draw.ellipse((100, 20, 120, 40), outline=255, fill=0) # B button

 else: # button is pressed:

 draw.ellipse((100, 20, 120, 40), outline=255, fill=1) # B button filled

 if not button_A.value and not button_B.value and not button_C.value:

 catImage = Image.open("happycat_oled_64.ppm").convert("1")

 disp.image(catImage)

 else:

 # Display image.

 disp.image(image)

 disp.show()

Run sudo python3 bonnet_buttons.py to run the demo, you should see

something like the below:

©Adafruit Industries Page 8 of 15

Press buttons to interact with the demo. Press the joystick + buttons at once for an

Easter egg!

Running Scripts on Boot

You can pretty easily make it so this program (or whatever program you end up

writing) run every time you boot your Pi.

The fastest/easiest way is to put it in /etc/rc.local

Run sudo nano /etc/rc.local and add the line

sudo python /home/pi/bonnet_buttons.py &

on its own line right before exit 0

Then save and exit. Reboot to verify that the screen comes up on boot!

©Adafruit Industries Page 9 of 15

For more advanced usage, check out our linux system services guide (https://

adafru.it/wFR)

Library Usage

In the examples subdirectory of the Adafruit_CircuitPython_SSD1306 repository (http

s://adafru.it/EsZ), you'll find more examples which demonstrate the usage of the

library.

To help you get started, I'll walk through the bonnet_buttons.py code below, that

way you can use this file as the basis of a future project.

Python Library Setup

import board

import busio

from digitalio import DigitalInOut, Direction, Pull

from PIL import Image, ImageDraw

import adafruit_ssd1306

First, a few modules are imported, including the adafruit_ssd1306 module which

contains the OLED driver classes. The code also imports board (containing the

Raspbery Pi pin definitions), busio (communication with the i2c and spi buses), and

digitalio (to control the Raspberry Pi's pins).

©Adafruit Industries Page 10 of 15

file:///home/running-programs-automatically-on-your-tiny-computer/
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306/tree/master/examples

You can also see some of the Python Imaging Library modules like Image, ImageDraw,

and ImageFont being imported. Those are, as you can imagine, are for drawing

images, shapes and text/fonts!

Display Setup

Create the I2C interface.

i2c = busio.I2C(board.SCL, board.SDA)

Create the SSD1306 OLED class.

disp = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)

The next bit of code creates the I2C interface (which the display on the bonnet

communicates over) and creates a SSD1306 OLED class. Note that we are passing SS

D1306_I2C 128 and 64, those values correspond to the bonnet's OLED display.

Pin Setup

Input pins:

button_A = DigitalInOut(board.D5)

button_A.direction = Direction.INPUT

button_A.pull = Pull.UP

button_B = DigitalInOut(board.D6)

button_B.direction = Direction.INPUT

button_B.pull = Pull.UP

button_L = DigitalInOut(board.D27)

button_L.direction = Direction.INPUT

button_L.pull = Pull.UP

button_R = DigitalInOut(board.D23)

button_R.direction = Direction.INPUT

button_R.pull = Pull.UP

button_U = DigitalInOut(board.D17)

button_U.direction = Direction.INPUT

button_U.pull = Pull.UP

button_D = DigitalInOut(board.D22)

button_D.direction = Direction.INPUT

button_D.pull = Pull.UP

button_C = DigitalInOut(board.D4)

button_C.direction = Direction.INPUT

button_C.pull = Pull.UP

Next up we define the pins that are used for the joystick and buttons. The Joystick

has Left, Right, Center (press in), Up and Down. There's also the A and B buttons on

the right. Each one should be set as an input with pull-up resistor (Pull.UP in the

code)

©Adafruit Industries Page 11 of 15

Display Initialization

Clear display.

disp.fill(0)

disp.show()

Create blank image for drawing.

Make sure to create image with mode '1' for 1-bit color.

width = disp.width

height = disp.height

image = Image.new('1', (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.

draw.rectangle((0, 0, width, height), outline=0, fill=0)

The next chunk of code clears the display by inverting its fill with fill(0) and then

writing to the display with show() .

Then it will configure a PIL drawing class to prepare for drawing graphics. Notice that

the image buffer is created in 1-bit mode with the '1' parameter, this is important

because the display only supports black and white colors.

We then re-draw a large black rectangle to clear the screen. In theory we don't have

to clear the screen again, but its a good example of how to draw a shape!

Button Input and Drawing

while True:

 if button_U.value: # button is released

 draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=0) #Up

 else: # button is pressed:

 draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=1) #Up filled

 if button_L.value: # button is released

 draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=0) #left

 else: # button is pressed:

 draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=1) #left

filled

 if button_R.value: # button is released

 draw.polygon([(60, 30), (42, 21), (42, 41)], outline=255, fill=0) #right

 else: # button is pressed:

 draw.polygon([(60, 30), (42, 21), (42, 41)], outline=255, fill=1) #right

filled

 if button_D.value: # button is released

 draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=0) #down

 else: # button is pressed:

 draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=1) #down

filled

 if button_C.value: # button is released

 draw.rectangle((20, 22, 40, 40), outline=255, fill=0) #center

©Adafruit Industries Page 12 of 15

 else: # button is pressed:

 draw.rectangle((20, 22, 40, 40), outline=255, fill=1) #center filled

 if button_A.value: # button is released

 draw.ellipse((70, 40, 90, 60), outline=255, fill=0) #A button

 else: # button is pressed:

 draw.ellipse((70, 40, 90, 60), outline=255, fill=1) #A button filled

 if button_B.value: # button is released

 draw.ellipse((100, 20, 120, 40), outline=255, fill=0) #B button

 else: # button is pressed:

 draw.ellipse((100, 20, 120, 40), outline=255, fill=1) #B button filled

 if not button_A.value and not button_B.value and not button_C.value:

 catImage = Image.open('happycat_oled_64.ppm').convert('1')

 disp.image(catImage)

 else:

 # Display image.

 disp.image(image)

 disp.show()

Once the display is initialized and a drawing object is prepared, you can draw shapes,

text and graphics using PIL's drawing commands (https://adafru.it/dfH).

This is a basic polling example - we'll check each button.value in order, and draw a

different shape - a directional arrow or a round circle) depending on whether the

button is pressed. If the button is pressed we have the shape filled in. If the button is

not pressed, we draw an outline only

Then we run disp.image(image) and disp.show() to actually push the updated

image to the OLED. This is required to actually make the changes appear!

Speeding up the Display

For the best performance, especially if you are doing fast animations, you'll want to

tweak the I2C core to run at 1MHz. By default it may be 100KHz or 400KHz

To do this edit the config with sudo nano /boot/config.txt

and add to the end of the file

dtparam=i2c_baudrate=1000000

©Adafruit Industries Page 13 of 15

http://effbot.org/imagingbook/imagedraw.htm

reboot to 'set' the change.

Downloads

Files

EagleCAD PCB files on GitHub (https://adafru.it/wWC)

UG-2864HSWEG01 (https://adafru.it/aJI) Datasheet

UG-2864HSWEG01 (https://adafru.it/wWD) User Guide

SSD1306 (https://adafru.it/aJK) Datasheet

Fritzing objects available in the Adafruit Fritzing Library (https://adafru.it/aP3)

Software

OLED Bonnet Toolkit (https://adafru.it/VbN)

Schematic & Fabrication Print

Dimensions in mm

•

•

•

•

•

•

©Adafruit Industries Page 14 of 15

https://github.com/adafruit/Adafruit-128x64-OLED-Bonnet-for-Raspberry-Pi-PCB
http://www.adafruit.com/datasheets/UG-2864HSWEG01.pdf
http://www.adafruit.com/datasheets/UG-2864HSWEG01%20user%20guide.pdf
http://www.adafruit.com/datasheets/SSD1306.pdf
https://github.com/adafruit/Fritzing-Library
https://github.com/lukehutch/Adafruit-OLED-Bonnet-Toolkit

©Adafruit Industries Page 15 of 15

	Adafruit 128x64 OLED Bonnet for Raspberry Pi
	Table of Contents
	Overview
	Usage
	Downloads

	Overview
	Usage
	Install CircuitPython
	Enable I2C
	Verify I2C Device

	Running Scripts on Boot
	Library Usage
	Python Library Setup
	Display Setup

	Pin Setup
	Display Initialization
	Button Input and Drawing

	Speeding up the Display

	Downloads
	Files
	Software

	Schematic & Fabrication Print

