
A Logger for CircuitPython
Created by Dave Astels

Last updated on 2019-04-24 06:03:29 PM UTC

Overview

Have you ever been working on code and needed a view into what was going on as it runs (or tries to)? In many
environments you can go into a debugger and poke around. We don't have that ability in CircuitPython, though. If
you're like this author, you sprinkle tactical print statements as needed.

Afterwards you probably go through and remove them or comment them out. Sometimes you miss some. Sometimes
you'd like to leave them in place and be able to turn them on and off. There are times when you'd like to see some
debugging information, and other times when you want to be notified of critical errors only.

A logging framework will let you do all that and more.

Specifically, the logging framework described in this guide will:

let you output messages at one of several levels of priority,
ignore messages below a specific priority,
automatically add a timestamp to messages,
provide the string format method support for building messages,
give you convenience methods for the outputting at standard priority levels,
control where messages go, and
make it easy to add new places for messages to go.

This guide will go over the use of the framework, walk through the implementation, and work through an example of
adding a new destination capability.

Parts

As this service uses RAM and space for longer programs, this guide will note use on M4 and nRF52840-based boards.

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 3 of 25

https://www.adafruit.com/product/4116
https://www.adafruit.com/product/3382
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/4062
https://www.adafruit.com/product/592

Adafruit PyPortal - CircuitPython Powered Internet Display

$54.95
OUT OF STOCK

OUT OF STOCK

Adafruit Metro M4 feat. Microchip ATSAMD51

$27.50
OUT OF STOCK

OUT OF STOCK

Adafruit Feather M4 Express - Featuring ATSAMD51

$22.95
IN STOCK

ADD TO CART

Adafruit Feather nRF52840 Express

$24.95
IN STOCK

ADD TO CART

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 4 of 25

https://www.adafruit.com/product/4116
https://www.adafruit.com/product/4116
https://www.adafruit.com/product/3382
https://www.adafruit.com/product/3382
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/4062
https://www.adafruit.com/product/4062

USB cable - USB A to Micro-B

$2.95
IN STOCK

ADD TO CART

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 5 of 25

https://www.adafruit.com/product/592
https://www.adafruit.com/product/592

Using a Logger

First, let's cover how to use a logger in general. The code we're using is very similar to the Python Logging
API (https://adafru.it/Eim) so if you've used that, you'll find this familiar

Basic Use

To use the framework, you create a logger and sprinkle logging calls throughout your code at appropriate levels.

The above example would ignore the info message and output the error one. Messages at any level less than the one
set in the Logger will be ignored. By default (if you don't set the level) everything will be output. So the output would

be:

1556.96: ERROR - Error message

When you use the log method you can pass in a numeric value, similarly you can set the level of the logger to any
numeric value. This gives you the most control over the logger. As an alternative, you can use the 5 defined level
values:

DEBUG - 10

INFO - 20

WARNING - 30

ERROR - 40

CRITICAL - 50

When a log message is output, the level gets rounded down. For example, a level of 36 would output as WARNING .

To make things easy to use, Logger provides a method for each of the levels. As shown above, you can use calls

like logger.error('Error message').

As mentioned, you can use existing Python formatting strings to build the message:

logger.info('Bad value: %d', value)

That's pretty much it. You create a logger, add logging statements to your code, and when your code starts up, set the
lowest level of messages you want to see.

import adafruit_logging as logging
logger = logging.getLogger('test')

logger.setLevel(logging.ERROR)
logger.info('Info message')
logger.error('Error message')

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 6 of 25

https://docs.python.org/3/library/logging.html

CircuitPython

Getting Familiar

CircuitPython is a programming language based on Python, one of the fastest growing programming languages in the
world. It is specifically designed to simplify experimenting and learning to code on low-cost microcontroller boards.
This guide covers the basics:

Welcome to CircuitPython! (https://adafru.it/cpy-welcome)

Be sure you have the latest CircuitPython for your board loaded onto your board. This should be from no earlier than
the end of Feb 2019.

CircuitPython is easiest to use within the Mu Editor. If you haven't previously used Mu, this guide will get you
started (https://adafru.it/ANO).

Download Library Files

Plug your CircuitPython supported board into your computer via a USB cable. Please be sure the cable is a good
power+data cable so the computer can talk to the Feather board.

A new disk should appear in your computer's file explorer/finder called CIRCUITPY. This is the place we'll copy the
code and code library. If you can only get a drive named xxxxBOOT, load CircuitPython per the guide above.

Create a new directory on the CIRCUITPY drive named lib.

Download the latest CircuitPython driver package to your computer using the green button below. Match the library
you get to the version of CircuitPython you are using. Save to your computer's hard drive where you can find it.

https://adafru.it/zB-

https://adafru.it/zB-

The logging support is in the adafruit_logger package.

The logging module will work with any CircuitPython capable board, M0, M4, nRF52840, etc.�

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 7 of 25

https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/

Copy the adafruit_logger package to the /lib directory on your board.

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 8 of 25

Code Walkthrough

Levels

This module is nice in that it doesn't require any other libraries other than the built-in time module.

There is a list that defines the levels: the value and a name. That's used to convert values to names, as well as create a
global variable for each level. They can be used directly as, for example, logging.ERROR .

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 9 of 25

Getting a Logger

To get hold of a logger, you use the getLogger function. You pass it the name of the logger you want to create or

retrieve. This way you can ask for a logger anywhere in your code. Specifying the same name will get you the same
logger.

Logger

The core of the module is the Logger class. By default loggers use a PrintHandler (which we'll look at below) that

simply uses print to output the messages. To change that to a different handler use the addHandler method. The

method is called addHandler to be closer to CPython's logger. It works slightly differently in that it actually adds an

additional handler the the logger rather than replacing it.

Logger as a level property that allows you to get and set the cuttoff priority level. Messages with a level below the

one set are ignored.

Finally, there is the log method that is the core of the class. This takes the level to log at, a format string, and

import time

levels = [(0, 'NOTSET'),
 (10, 'DEBUG'),
 (20, 'INFO'),
 (30, 'WARNING'),
 (40, 'ERROR'),
 (50, 'CRITICAL')]

for value, name in levels:
 globals()[name] = value

def level_for(value):
 """Convert a numberic level to the most appropriate name.

 :param value: a numeric level

 """
 for i in range(len(LEVELS)):
 if value == LEVELS[i][0]:
 return LEVELS[i][1]
 elif value < LEVELS[i][0]:
 return LEVELS[i-1][1]
 return LEVELS[0][1]

logger_cache = dict()

def getLogger(name):
 """Create or retrieve a logger by name.

 :param name: the name of the logger to create/retrieve

 """
 if name not in logger_cache:
 logger_cache[name] = Logger()
 return logger_cache[name]

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 10 of 25

arguments to be inserted into the format string. The % operator is used (passing it the supplied arguments) to create

the message.

Finally, there is a convenience method for logging at each level.

class Logger(object):
 """Provide a logging api."""

 def __init__(self):
 """Create an instance.

 :param handler: what to use to output messages. Defaults to a PrintHandler.

 """
 self._level = NOTSET
 self._handler = PrintHandler()

 def setLevel(self, value):
 """Set the logging cuttoff level.

 :param value: the lowest level to output

 """
 self._level = value

 def addHandler(hldr):
 """Sets the handler of this logger to the specified handler.
 NOTE this is slightly different from the CPython equivalent which adds
 the handler rather than replaceing it.

 :param hldr: the handler

 """
 self._handler = hldr

 def log(self, level, format_string, *args):
 """Log a message.

 :param level: the priority level at which to log
 :param format_string: the core message string with embedded formatting directives
 :param args: arguments to ``format_string.format()``, can be empty

 """
 if level >= self._level:
 self._handler.emit(level, format_string % args)

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 11 of 25

Handlers

We skipped over that part of the file. And what is that PrintHandler we saw in the constructor?

Looking at Logger 's log method above, we see that the handler object is used to emit (i.e. send out) the message.

The format_string and args are combined using the % operator and the result is sent, along with the level, to the

emit method of the handler.

Here's the builtin PrintHandler along with the LoggingHandler abstract base class .

LoggingHandler provides a method, format , which takes the level and message to be logged and returns the string

 def debug(self, format_string, *args):
 """Log a debug message.

 :param format_string: the core message string with embedded formatting directives
 :param args: arguments to ``format_string.format()``, can be empty

 """
 self.log(DEBUG, format_string, *args)

 def info(self, format_string, *args):
 """Log a info message.

 :param format_string: the core message string with embedded formatting directives
 :param args: arguments to ``format_string.format()``, can be empty

 """
 self.log(INFO, format_string, *args)

 def warning(self, format_string, *args):
 """Log a warning message.

 :param format_string: the core message string with embedded formatting directives
 :param args: arguments to ``format_string.format()``, can be empty

 """
 self.log(WARNING, format_string, *args)

 def error(self, format_string, *args):
 """Log a error message.

 :param format_string: the core message string with embedded formatting directives
 :param args: arguments to ``format_string.format()``, can be empty

 """
 self.log(ERROR, format_string, *args)

 def critical(self, format_string, *args):
 """Log a critical message.

 :param format_string: the core message string with embedded formatting directives
 :param args: arguments to ``format_string.format()``, can be empty

 """
 self.log(CRITICAL, format_string, *args)

*

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 12 of 25

to be output, built from a timestamp, the name of the level, and the message.

It also contains a placeholder for the emit method which raises a NotImplementedError as this method must be

implemented by subclasses.

PrintHandler subclasses LoggingHandler and provides an implementation of emit which uses LoogingHandler 's

format method to create the string to be output and prints it. This handler is bundled into the logging module since

this is usually what you will need.

class LoggingHandler(object):
 """Abstract logging message handler."""

 def format(self, level, msg):
 """Generate a timestamped message.

 :param level: the logging level
 :param msg: the message to log

 """
 return '{0}: {1} - {2}'.format(time.monotonic(), level_for(level), msg)

 def emit(self, level, msg):
 """Send a message where it should go.
 Place holder for subclass implementations.
 """
 raise NotImplementedError()

class PrintHandler(LoggingHandler):
 """Send logging messages to the console by using print."""

 def emit(self, level, msg):
 """Send a message to teh console.

 :param level: the logging level
 :param msg: the message to log

 """
 print(self.format(level, msg))

*An abstract base class is not meant to be directly instantiated, rather it is to be subclassed.

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 13 of 25

Adding Handlers

As mentioned earlier, you can write custom handlers to do whatever you need to with the information string to be
logged. As an example, you can create a handler to send messages to:

The serial port (UART)
A file
To the Adafruit IO data service
To a Bluetooth connection

This capability is very helpful when you do not want to mix debug output with output that your code is generating.

The following pages go over the methods of outputting to the differing streams.

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 14 of 25

Log to UART

With most devboards using the USB connection for the REPL or direct control, you may want to have a secondary USB
(or serial) connection - to the same computer or maybe another one. You can also of course use a UART wireless link,
XBee, etc. UART is pretty common!

The following code demonstrates logging messages to a board serial (UART) port (usually pin TX):

"""
UART based message handler for CircuitPython logging.

Adafruit invests time and resources providing this open source code.
Please support Adafruit and open source hardware by purchasing
products from Adafruit!

Written by Dave Astels for Adafruit Industries
Copyright (c) 2018 Adafruit Industries
Licensed under the MIT license.

All text above must be included in any redistribution.
"""

#pylint:disable=missing-super-argument

Example:
#
import board
import busio
from uart_handler import UartHandler
import adafruit_logging as logging
#
uart = busio.UART(board.TX, board.RX, baudrate=115200)
logger = logging.getLogger('uart')
logger.addHandler(UartHandler(uart))
logger.level = logging.INFO
logger.info('testing')

from adafruit_logging import LoggingHandler

class UartHandler(LoggingHandler):
 """Send logging output to a serial port."""

 def __init__(self, uart):
 """Create an instance.

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 15 of 25

This does a few things.

First, it uses the UART instance passed in, giving you the flexibility to use the serial port you want.

It provides its own format method which calls the superclass's format to build the output string (that's the

LoggingHandler class) and appends a newline sequence (a carriage return then a line feed) since write doesn't

automatically terminate the line the way print does.

The emit method uses format to build the string, converts it to a bytearray and writes the bytes to the UART.

You would use it like in the following example:

 :param uart: the busio.UART instance to which to write messages

 """
 self._uart = uart

 def format(self, level, msg):
 """Generate a string to log.

 :param level: The level at which to log
 :param msg: The core message

 """
 return super().format(level, msg) + '\r\n'

 def emit(self, level, msg):
 """Generate the message and write it to the UART.

 :param level: The level at which to log
 :param msg: The core message

 """
 self._uart.write(bytes(self.format(level, msg), 'utf-8'))

import board
import busio
from uart_handler import UartHandler
import adafruit_logging as logging

uart = busio.UART(board.TX, board.RX, baudrate=115200)
logger = logging.getLogger('test')
logger.addHandler(UartHandler(uart))
logger.setLevel(logging.INFO)
logger.info('testing')

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 16 of 25

Log to
File

A file based handler is similar to the serial port handler, although the output is to a file either on flash (CIRCUITPY
drive) or an SD card. If yo an SD card, the SPI bus must be set up to the card interface and the filesystem set.

The handler code is shown below:

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 17 of 25

You will need to do some extra work to enable your code to write to the file system. The details are covered in this

"""
File based message handler for CircuitPython logging.

Adafruit invests time and resources providing this open source code.
Please support Adafruit and open source hardware by purchasing
products from Adafruit!

Written by Dave Astels for Adafruit Industries
Copyright (c) 2018 Adafruit Industries
Licensed under the MIT license.

All text above must be included in any redistribution.
"""

#pylint:disable=missing-super-argument

Example:
#
#
from file_handler import FileHandler
import adafruit_logging as logging
l = logging.getLogger('file')
l.addHandler(FileHandler('log.txt'))
l.level = logging.ERROR
l.error("test")

from adafruit_logging import LoggingHandler

class FileHandler(LoggingHandler):

 def __init__(self, filename):
 """Create an instance.

 :param filename: the name of the file to which to write messages

 """
 self._filename = filename

 def format(self, level, msg):
 """Generate a string to log.

 :param level: The level at which to log
 :param msg: The core message

 """
 return super().format(level, msg) + '\r\n'

 def emit(self, level, msg):
 """Generate the message and write it to the UART.

 :param level: The level at which to log
 :param msg: The core message

 """
 with open(self._filename, 'a+') as f:
 f.write(self.format(level, msg))

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 18 of 25

https://learn.adafruit.com/circuitpython-essentials/circuitpython-storage

guide (https://adafru.it/DlE).

Once that's done, you can direct log messages to a file, for example:

This will result in a file log.txt on the CIRCUITPY drive containing something like:

1567.13: ERROR - test

from file_handler import FileHandler
import adafruit_logging as logging

l = logging.getLogger('test')
l.addHandler(FileHandler('log.txt'))
l.setLevel(logging.ERROR)
l.error("test")

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 19 of 25

Log to Adafruit IO

When Internet connectivity is available (usually via WiFi), data may be logged to the Adafruit IO data service.

See this guide to get started with Adafruit IO:

Welcome to Adafruit IO (https://adafru.it/BRB)

The following uses a PyPortal (M4 + ESP32) in writing a handler to send log messages to Adafruit IO.

Most of the code is in the constructor to set up the connection to the ESP32 and Adafruit IO. You pass a string to the
constructor that is used to create the feed name which is -logging .

Line terminators don't need to be added, so we don't need a format method; we can directly use the inherited one.

"""
Adafruit IO based message handler for CircuitPython logging.

Adafruit invests time and resources providing this open source code.
Please support Adafruit and open source hardware by purchasing
products from Adafruit!

Written by Dave Astels for Adafruit Industries
Copyright (c) 2018 Adafruit Industries
Licensed under the MIT license.

All text above must be included in any redistribution.
"""

#pylint:disable=missing-super-argument

Example:
#
from aio_handler import AIOHandler
import adafruit_logging as logging

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 20 of 25

https://learn.adafruit.com/welcome-to-adafruit-io

import adafruit_logging as logging
l = logging.getLogger('aio')
l.addHandler(AIOHandler('test'))
l.level = logging.ERROR
l.error("test")

import board
import busio
from digitalio import DigitalInOut
import neopixel
from adafruit_logging import LoggingHandler
from adafruit_esp32spi import adafruit_esp32spi, adafruit_esp32spi_wifimanager
from adafruit_io.adafruit_io import RESTClient, AdafruitIO_RequestError

try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

class AIOHandler(LoggingHandler):

 def __init__(self, name):
 """Create an instance."""
 # PyPortal ESP32 Setup
 esp32_cs = DigitalInOut(board.ESP_CS)
 esp32_ready = DigitalInOut(board.ESP_BUSY)
 esp32_reset = DigitalInOut(board.ESP_RESET)
 spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
 esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)
 status_light = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0.2)
 wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light)

 # Set your Adafruit IO Username and Key in secrets.py
 # (visit io.adafruit.com if you need to create an account,
 # or if you need your Adafruit IO key.)
 ADAFRUIT_IO_USER = secrets['adafruit_io_user']
 ADAFRUIT_IO_KEY = secrets['adafruit_io_key']

 # Create an instance of the Adafruit IO REST client
 self._io = RESTClient(ADAFRUIT_IO_USER, ADAFRUIT_IO_KEY, wifi)

 self._name = '{0}-logging'.format(name)
 try:
 # Get the logging feed from Adafruit IO
 self._log_feed = self._io.get_feed(self._name)
 except AdafruitIO_RequestError:
 # If no logging feed exists, create one
 self._log_feed = self._io.create_new_feed(self._name)

 def emit(self, level, msg):
 """Generate the message and write it to the UART.

 :param level: The level at which to log
 :param msg: The core message

 """
 self._io.send_data(self._log_feed['key'], self.format(level, msg))

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 21 of 25

You'll need a secrets.py file to hold your WiFi and Adafruit IO credentials. You will also need the required libraries for
your board and an Adafruit IO account. See this guide (https://adafru.it/EfE) for setting it all up on a PyPortal.

The example code to use the above handler on a PyPortal or M4 Express WiFi:

from aio_handler import AIOHandler
import adafruit_logging as logging

l = logging.getLogger('aio')
l.addHandler(AIOHandler('test'))
l.level = logging.ERROR
l.error("test")

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 22 of 25

https://learn.adafruit.com/iot-pyportal-data-logger-adafruitio-circuitpython

Log to BLE

If you are using a board that supports BLE, such as the Feather nRF52840, you can write a handler that sends log
messages over BLE to, for example, the BlueFruit mobile app. As you can see above, each message is split into 20
character chunks. This is due to the way the low level BLE UART support code operates. Since we use the BLE UART
interface, this is very much like the UARTHandler .

The constructor sets up the BLE UART interface, and starts advertising. This lets devices in the area see it and connect
to it. See this guide (https://adafru.it/DNc) for information on using the BlueFruit app. You need to select UART Mode to
receive the logging messages from the board.

As with the UART handler, this provides its own format method which calls the superclass's format to build the

output string (that's the LoggingHandler class) and appends a newline sequence (a carriage return then a line feed)

since write doesn't automatically terminate the line the way print does.

The emit method ensures that there is a live connection, uses format to build the string, converts it to a bytearray,

and writes the bytes to the BLE UART.

You would use it like in the following example:

Temporarily unable to load content:

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 23 of 25

https://learn.adafruit.com/bluefruit-le-connect

import board
import busio
from ble_handler import BLEHandler
import adafruit_logging as logging

logger = logging.getLogger('test')
logger.addHandler(BLEHandler())
logger.setLevel(logging.INFO)
logger.info('testing')

© Adafruit Industries https://learn.adafruit.com/a-logger-for-circuitpython Page 24 of 25

Testing and Expanding Handlers

Testing handlers

Here's a simple program to test it out a handler. This was used to created the log shown on the Overview page. This
shows the Adafruit IO handler but you may change the handler to one of the others.

Getting More Elaborate

A single logger sends it's output to a single place (we've seen console, serial port, and a file), but there's nothing that
says you can only have one logger in use. Perhaps you'll want everything logged to a file, and critical errors logged to
the console as well. Just create a file based logger and log everything with it, and also have a console logger (using
the default PrintLogger) that you use for critical things.

You could even write a custom handler that takes other handlers and routes messages appropriately based on level.
For example, logging most messages to a file, but sending critical ones via text or email, or sounding an alarm... it
doesn't have to be just outputting strings.

import time
import random
from aio_handler import AIOHandler
import adafruit_logging as logging

l = logging.getLogger('aio')
l.addHandler(AIOHandler('test'))

while True:
 t = random.randint(1, 5)
 if t == 1:
 l.debug("debug message: %d", random.randint(0, 1000))
 elif t == 2:
 l.info("debug message: %d", random.randint(0, 1000))
 elif t == 3:
 l.warning("warning message: %d", random.randint(0, 1000))
 elif t == 4:
 l.error("error message: %d", random.randint(0, 1000))
 elif t == 5:
 l.critical("critical message: %d", random.randint(0, 1000))
 time.sleep(5.0 + (random.random() * 5.0))

© Adafruit Industries Last Updated: 2019-04-24 06:03:29 PM UTC Page 25 of 25

	Guide Contents
	Overview
	Parts
	Adafruit PyPortal - CircuitPython Powered Internet Display
	Adafruit Metro M4 feat. Microchip ATSAMD51
	Adafruit Feather M4 Express - Featuring ATSAMD51
	Adafruit Feather nRF52840 Express
	USB cable - USB A to Micro-B

	Using a Logger
	Basic Use

	CircuitPython
	Getting Familiar
	Download Library Files

	Code Walkthrough
	Levels
	Getting a Logger
	Logger
	Handlers

	Adding Handlers
	Log to UART
	Log to File
	Log to Adafruit IO
	Log to BLE
	Testing and Expanding Handlers
	Testing handlers
	Getting More Elaborate

