3D Printed Star Trek Communicator

Created by Ruiz Brothers

https://learn.adafruit.com/3d-printed-star-trek-communicator

Last updated on 2023-08-29 03:09:21 PM EDT
Table of Contents

Overview
- Real Star Trek Communicator
- Adafruit Parts
- Tools and Supplies

Circuit Diagram
- Electronics
- Ground Splitters
- Vibration Motor
- Lithium Battery Charger

3D Printing
- 3D Printed Parts
- Slicer Settings
- Customize The Design
- Filament Materials
- Tolerances
- Generating Supports
- Cover Supports
- Minimize warping
- Setting up dual colors
- Removing supports

Code
- Just the Blinky Code

Assemble
- Clean up
- Speaker Cover
- Speaker
- SIM Card
- Measure wires
- Speaker wire
- Mic ring
- Mic Slot
- Ground Splitters
- Tin Flexy PCBs
- Solder ground Splitters
- Button pins
- Mounting LED to buttons
- Solder buttons
- Buttons and LEDs Mounting Plate
- Translucent Buttons
- Mounting plate
- LED Placement
- Vibration Motor
- Slide switch
- Mounting the Battery
- Circuit Complete
• Cable Management
• Snap case together
• Attaching the Cover
• Trim filament
• Mic Grill
• Button Cover
• Complete
Overview

Real Star Trek Communicator

Making is the final frontier. These are the projects of Adafruit Industries. Its life long mission: to explore strange new projects, to seek out new 3D printed forms and new circuitry, to boldly make what no maker has made before.

Boldly go where no project has gone before with this real working Star Trek Communicator!

This prop is more than just a 'prop' - it can make real cell phone calls using the FONA Feather! It features a vibration motor, speaker and microphone mounted inside the case. You can customize the buttons to call any number you want.
The 2500 mAh battery is rechargeable over USB and will provide several hours of energy.

It's never been easier to build your own cell phone!

Adafruit Parts

- Fona Feather (http://adafru.it/3027)
- SIM Card (http://adafru.it/2505)
- Mic (http://adafru.it/1935)
- Speaker (http://adafru.it/1891)
- Vibration Motor (http://adafru.it/1201)
- 6mm Buttons (http://adafru.it/367)
- uFL Antenna (http://adafru.it/1991)
- ~220 ohm resistor (http://adafru.it/2780)
• transistor (http://adafru.it/756)
• 1N4001 diode (http://adafru.it/755)
• LED Sequin (http://adafru.it/1758)
• Flexy PCB (http://adafru.it/1518)
• JST Extension (http://adafru.it/1131)
• 2000mAh Battery (http://adafru.it/2011)
• Slide Switch (http://adafru.it/805)

Tools and Supplies

• 3D Printer () + Filament (http://adafru.it/2080)
• Soldering Iron () + Solder ()
• 30AWG Wire (http://adafru.it/2051)
• Helping Third Hands (http://adafru.it/291) / Panavise (http://adafru.it/151)
• Heat Shrink (http://adafru.it/1649)
• E6000 Glue / Mounting Tack
• Wire Stripper (http://adafru.it/527) / Cutters (http://adafru.it/152)
• Filing Tool / Hobby Knife

Circuit Diagram

Electronics

Follow the circuit diagram below and reference the connections for wiring the circuit.
Ground Splitters

Use a flex PCB to create the extra grounds needed for the buttons, LEDs and motor.

Cut two pieces from the ground railing on the flex PCB, one piece with 7 holes and one with 3 holes as shown.

Vibration Motor

The motor requires a resistor, diode and transistor to work, follow the diagram as shown.

Lithium Battery Charger

FONA Feather has a built-in USB battery charging circuit. Plug in a microUSB cable into the microUSB port on Fona to recharge the lipo battery using a USB adapter from a wall outlet or your computer.
3D Printing

3D Printed Parts

The communicator is split into 12 different pieces. The two case parts snap fit together without any screws. The top case is printed in two colors by switching filament colors during the print. We paused the print at a height of 7.25mm, and then swapped colors to achieve the dual color case.

The speaker grill and buttons snap fit into the slot holes. The mic grill is attached to the button cover with a piece of a tape.

The case cover is held in place using a piece of filament to create the hinge.

Buttons are mounted underneath the top case with the button mounting plate.

The button cover was milled out of aluminium using a CNC, but you can easy print it in gray PLA material.
Slicer Settings

To slice the parts, we used Simplify3D. We recommend using the settings below or use them as reference. We 3D printed these parts on a Ultimaker 2+, Flashforge Creator Pro and the Othermill CNC. If you have Simplify3D, you can download our profiles below.

Customize The Design

The parts were designed in Autodesk Fusion 360. The design is public and available to download in different formats. If you’d like to use a different CAD software package, you are free to import the files and remix them.

Filament Materials

We recommend using PLA material to reduce wrapping while 3D printing. The parts can be printed in different types of filament, such as ABS, PET or Nylon.

The push buttons are printed in Translucent PLA to allow the LEDs to show through.
<table>
<thead>
<tr>
<th>Component</th>
<th>Print Settings</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-top-body.stl</td>
<td>230c extruder 50mm/s print speed 120mm/s travel speed 0.4mm Nozzle .44mm Extrusion width</td>
<td>The top body requires supports underneath.</td>
</tr>
<tr>
<td>ST-btm-body.stl</td>
<td></td>
<td>The bottom body takes around 4 hours to print.</td>
</tr>
<tr>
<td>ST-cover.stl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST-speaker.stl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST-mic.stl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST-btn-answer.stl (black buttons)</td>
<td></td>
<td>Lay the button holder on it's side and add supports underneath the standoffs.</td>
</tr>
<tr>
<td>ST-btn-LED.stl (green and blue buttons)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST-btn-call.stl (red button)</td>
<td></td>
<td>The Button panel can be milled out of aluminium or printed in gray filament.</td>
</tr>
<tr>
<td>ST-btn-holder.stl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST-btn-panel.stl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tolerances

The slots for the speaker, motor, buttons and slide switch may have tight tolerances. Test the tolerances by inserting all of components into each slot. If parts don't fit into the slots, you may need to use a craft knife or filing tool to loosen the area.
Generating Supports

The top body case will need supports underneath the entire part of the case. We can optimize the print by changing the default support pillar resolution to 8.00mm. Generate the supports and then create additional pillars beneath all of the standoffs until it looks like the picture above.

Cover Supports

Lay the cover flat like shown and then generate supports to hold up the hinges like in the picture above.
Minimize warping

The buttons are small and can easily warp if the hot end prints in the same area for too long. We recommend printing two buttons at the same time with the fan speed set to 100% to eliminate any deformation.

Setting up dual colors

Print in two colors by pausing the print at a height of 7.25mm and swap the colors from gray to black.

You can also do this inside of Simplify 3D by setting up two processes.
Removing supports

Use flat pliers to help remove supports. Don't pull a large amount off as it could damage the standoffs. Carefully remove small chunks at a time.

Code

Copy and paste the code below into the Arduino IDE.

Edit the FRIENDPHONE line to any number you'd like the communicator to call.

If you just want blinky lights without any phone functionality, you can use the simple blinky code on the bottom of this page.

For a better understanding of how the code works, watch LadyAda's stream on coding the communicator.

```c
#include "Adafruit_FONA.h"
#include "pitches.h"

#define FONA_RX 9
#define FONA_TX 8
#define FONA_RST 4
#define FONA_RI 7
#define BUZZER_A3
#define CALLBUTTON A0
#define HANGUPBUTTON A1
#define ANSWERBUTTON A2
#define FRIENDPHONE "5555555"
#define LED_PIN_RED 10
```
#define LED_PIN_YELLOW 11
#define LED_PIN_BLUE 12

#include "SoftwareSerial.h"
SoftwareSerial fonaSS = SoftwareSerial(FONA_TX, FONA_RX);
SoftwareSerial *fonaSerial = &fonaSS;

// Update LEDs; call this as frequently as possible in loop & any while() delays
void animateLEDs() {
 uint32_t t = millis();
 digitalWrite(LED_PIN_YELLOW, ((1 << ((t >> 8) & 0x7)) & 0b10100000) > 0);
 digitalWrite(LED_PIN_RED, ((t / 3) & 511) > 100);
 digitalWrite(LED_PIN_BLUE, ((t / 5) & 1023) > 800);

 int melody[] = {
 NOTE_G3, NOTE_F4, NOTE_F4, NOTE_E4, NOTE_D4, NOTE_C4, NOTE_B3, NOTE_AS3,
 NOTE_AS3,
 };
 int noteDurations[] = {
 2, 2, 4, 4, 4, 4, 4, 2, 1
 };

 void playTune() {
 // iterate over the notes of the melody:
 for (int thisNote = 0; thisNote < 9; thisNote++) {
 int noteDuration = 1000 / noteDurations[thisNote];
 fona.print(F("AT+SIMTONE=1,")); fona.print(melody[thisNote]);
 fona.print(","); fona.print(noteDuration);
 fona.print("0,"); fona.println(noteDuration);
 noteDuration *= 1.1;
 while (noteDuration > 0) {
 // if a button press comes in, bail!
 if ((! digitalRead(HANGUPBUTTON)) || (! digitalRead(CALLBUTTON)) || (!
 digitalRead(ANSWERBUTTON))) {
 return;
 }
 delay(10);
 animateLEDs();
 noteDuration -= 10;
 }
 }
 }

 void setup() {
 pinMode(CALLBUTTON, INPUT_PULLUP);
 pinMode(HANGUPBUTTON, INPUT_PULLUP);
 pinMode(ANSWERBUTTON, INPUT_PULLUP);
 pinMode(BUZZER, OUTPUT);
 pinMode(FONA_RST, OUTPUT);
 digitalWrite(FONA_RST, LOW);
 delay(100);
 digitalWrite(FONA_RST, HIGH);
 pinMode(LED_PIN_RED, OUTPUT);
 pinMode(LED_PIN_YELLOW, OUTPUT);
 pinMode(LED_PIN_BLUE, OUTPUT);
 while (!Serial);
 Serial.begin(115200);
 Serial.println(F("Star Trek Communicator"));
 }
}
Serial.println(F("Initializing....(May take 3 seconds)"));

fonaserial->begin(4800);
if (! fona.begin(*fonaserial)) {
 Serial.println(F("Couldn't find FONA"));
 while (1);
}
Serial.println(F("FONA is OK"));

while (1) {
 uint8_t n = fona.getNetworkStatus();
 Serial.print(F("Network status "));
 Serial.print(n);
 Serial.print(F(" : "));
 if (n == 0) Serial.println(F("Not registered"));
 if (n == 1) Serial.println(F("Registered (home)"));
 if (n == 2) Serial.println(F("Not registered (searching)"));
 if (n == 3) Serial.println(F("Denied"));
 if (n == 4) Serial.println(F("Unknown"));
 if (n == 5) Serial.println(F("Registered roaming"));

 if (n == 1) break;
 delay(500);
}
fonas.setAudio(FONA_EXTAUDIO);
fonas.setVolume(80);
playTune();
Serial.println("Ready to call!");
fonas.println(F("AT+CRSL=0")); // set to ~80 if you want jingle ringtone on

void loop() {
 animateLEDs();

 if (digitalRead(FONA_RI)) {
 digitalWrite(BUZZER, LOW);
 } else {
 Serial.println(F("Ring Ring"));
 digitalWrite(BUZZER, HIGH);
 playTune();
 }

 if (! digitalRead(HANGUPBUTTON)) {
 delay(10); // debounce
 while (! digitalRead(HANGUPBUTTON));
 // button is released!
 Serial.println(F("Hanging up the phone!"));
 fona.hangUp();
 }

 if (! digitalRead(CALLBUTTON)) {
 delay(10); // debounce
 while (! digitalRead(CALLBUTTON));
 // button is released!

 if (fona.getCallStatus() != 0) {
 Serial.println(F("Not ready to call, bailing"));
 return;
 }
 Serial.print(F("Calling phone! "));
 Serial.println(FRIENDPHONE);
 fona.callPhone(FRIENDPHONE);
 }

 if (! digitalRead(ANSWERBUTTON)) {

delay(10); // debounce
while (! digitalRead(ANSWERBUTTON));
// button is released!
Serial.println(F("Answering the phone!"));
fono.pickUp();
}

/***
 * Public Constants
 **/
#define NOTE_B0 31
#define NOTE_C1 33
#define NOTE_CS1 35
#define NOTE_D1 37
#define NOTE_DS1 39
#define NOTE_E1 41
#define NOTE_F1 44
#define NOTE_FS1 46
#define NOTE_G1 49
#define NOTE_GS1 52
#define NOTE_A1 55
#define NOTE_AS1 58
#define NOTE_B1 62
#define NOTE_C2 65
#define NOTE_CS2 69
#define NOTE_D2 73
#define NOTE_DS2 78
#define NOTE_E2 82
#define NOTE_F2 87
#define NOTE_FS2 93
#define NOTE_G2 98
#define NOTE_GS2 104
#define NOTE_A2 110
#define NOTE_AS2 117
#define NOTE_B2 123
#define NOTE_C3 131
#define NOTE_CS3 139
#define NOTE_D3 147
#define NOTE_DS3 156
#define NOTE_E3 165
#define NOTE_F3 175
#define NOTE_FS3 185
#define NOTE_G3 196
#define NOTE_GS3 208
#define NOTE_A3 220
#define NOTE_AS3 233
#define NOTE_B3 247
#define NOTE_C4 262
#define NOTE_CS4 277
#define NOTE_D4 294
#define NOTE_DS4 311
#define NOTE_E4 330
#define NOTE_F4 349
#define NOTE_FS4 370
#define NOTE_G4 392
#define NOTE_GS4 415
#define NOTE_A4 440
#define NOTE_AS4 466
#define NOTE_B4 494
#define NOTE_C5 523
#define NOTE_CS5 554
#define NOTE_D5 587
#define NOTE_DS5 622

©Adafruit Industries
#define NOTE_E5 659
#define NOTE_F5 698
#define NOTE_G5 784
#define NOTE_GS5 831
#define NOTE_A5 880
#define NOTE_AS5 932
#define NOTE_B5 988
#define NOTE_C6 1047
#define NOTE_CS6 1109
#define NOTE_D6 1175
#define NOTE_DS6 1245
#define NOTE_E6 1319
#define NOTE_F6 1397
#define NOTE_FS6 1480
#define NOTE_G6 1568
#define NOTE_GS6 1661
#define NOTE_A6 1760
#define NOTE_AS6 1865
#define NOTE_B6 1976
#define NOTE_C7 2093
#define NOTE_CS7 2217
#define NOTE_D7 2349
#define NOTE_DS7 2489
#define NOTE_E7 2637
#define NOTE_F7 2794
#define NOTE_FS7 2960
#define NOTE_G7 3136
#define NOTE_GS7 3322
#define NOTE_A7 3520
#define NOTE_AS7 3729
#define NOTE_B7 3951
#define NOTE_C8 4186
#define NOTE_CS8 4435
#define NOTE_D8 4699
#define NOTE_DS8 4978

Just the Blinky Code

#define LED_PIN_RED 10
#define LED_PIN_YELLOW 11
#define LED_PIN_BLUE 12

void animateLEDs() {
 uint32_t t = millis();
 digitalWrite(LED_PIN_YELLOW, ((1 << ((t >> 8) & 0x7)) &
0b10100000) > 0);
 digitalWrite(LED_PIN_RED , ((t / 3) & 511) > 100);
 digitalWrite(LED_PIN_BLUE , ((t / 5) & 1023) > 800);
}

void setup() {
 // put your setup code here, to run once:
 pinMode(LED_PIN_RED , OUTPUT);
 pinMode(LED_PIN_YELLOW, OUTPUT);
 pinMode(LED_PIN_BLUE , OUTPUT);
}

void loop() {
 // put your main code here, to run repeatedly:
 animateLEDs();
}
Assemble

Clean up

Use a hobby knife to clean any filament around the slots for each component.

Make sure to check the tolerance for each part before trimming away too much material.
Speaker Cover

Fit the speaker cover from the back of the top case. It should have a tight tolerance so it can stay place.

Speaker

The speaker press fits inside the speaker slot as shown. Make sure to trim away any filament if it's too tight.

SIM Card

A SIM card is required for making phone calls. The Ting SIM card can snap apart into standard, mini, micro and nano SIM sizes. Insert the SIM into the Fona with the SIM pins facing down.
Measure wires

Lay the two cases side by side as shown and measure each wire from the Fona to the mounting slots of each component. Leave a little extra slack to adjust wire sizes if needed.

Speaker wire

Replace the speaker wires with silicone wires so they can reach the pins on the Fona.
Mic ring
Remove the rubber ring around the mic to allow it to fit inside the mic slot.

Mic Slot
Pass the wires through the mic slot and carefully wedge the mic into place until it's flush with the square mic grill indent.
Ground Splitters
Use a flex PCB to create the extra grounds for the buttons, LEDs and motor.

Cut two pieces from the ground railing, one piece with 7 holes and one with 3 holes as shown.

Tin Flexy PCBs
Use tweezers to hold the flex PCB pieces while tinning.
Solder ground Splitters
Solder the shorter ground splitter to the Fona ground pin. Lay it on top of the ground pin and apply heat to solder in place. The two additional grounds will connect the motor and the larger second ground splitter.

The larger 7 hole splitter will connect the LEDs and buttons.

Button pins
To mount the buttons to the panel, we'll need to bend the pins stright out so they sit flush on the mounting plate.
Mounting LED to buttons

LEDs can be mounted on top of the button actuator with a small amount of glue or mounting tac. Be careful not to get any glue inside the button.

Solder buttons

Tin the button pins and wires before soldering them to each ground wire.
Buttons and LEDs Mounting Plate

Align the buttons with the square grooves on the mounting plate.

Use tac to mount the LEDs to the plate.
Translucent Buttons

Slide the three color buttons through the top slot with the red button in the middle. The two black buttons mount in the bottom row.

Mouting plate

Align the standoffs on the mounting plate to the standoffs on the case. Use #2-56 screws to attach the button plate to the case.

LED Placement

Make sure the LEDs are aligned and can equally diffuse each printed button. You can nudge them into place with a tweezzer.
Vibration Motor

The motor requires a resistor, diode and transistor to work, follow the circuit as shown.

Measure wires, solder the parts together and then mount the motor in the circular slot on the case.

Slide switch

You will want the slide switch on the battery, not the ENABLE pin. Shorten and solder a JST extension cable to the slide switch as shown.
Mounting the Battery

Position the battery so the wires are close to the slide switch. Affix the battery to the case using double stick tape or mounting tac.

Circuit Complete

Mount the slide switch into slot and attach the uFL antenna to the Fona. Use tac to mount the vibration circuit next to the motor. You can apply tac to the transistor to keep it in place.

Cable Management

Bundle the button and LED wires with shrink tube or tape.
Snap case together

The two parts of the case snap fit together without any screws. Join one edge of the case and then apply a small amount of force to snap the opposite side together.

Attaching the Cover

The cover hinge utilizes a piece of 1.75mm filament. Measure and cut a piece the length of the case.

Press the cover onto the case and then fit the filament through the holes in the case and the cover.
Trim filament

Use flush cutters to trim off the ends of the filament.

You can push the filament out with another piece of filament if you ever need to remove the cover.

Mic Grill

Use a piece of tape to attach the microphone grill to the button cover. Cut a small piece and stick it to backside of the button cover.
Button Cover

Align the two buttons through the cover and slide the button cover in at an angle. Apply a small amount of force to snap fit the cover to the case.

Complete

Your real working communicator is now complete! Flip on the slide switch and make a test call.

Live long and prosper :)}