

16-Step Drum Sequencer

Created by John Park

https://learn.adafruit.com/16-step-drum-sequencer

Last updated on 2023-01-11 11:24:25 AM EST

©Adafruit Industries Page 1 of 38

3

6

19

24

34

Table of Contents

Overview

• Parts

Build the 16-Step Drum Sequencer

• Solder KB2040 Pins

• Prepare the AW9523

• Jumper Soldering on AW9523

• Play/Pause Switch

• Step Switches

• Step Switch Breakout Soldering

• Breadboard Wiring

• Switch Wiring

• Switch Wiring Continued

• Play Button and Switch LED Wiring

• Top Row Switches

• Add the Display

• Add Display

• Add Rotary Encoder

CircuitPython

• CircuitPython Quickstart

• Safe Mode

• Flash Resetting UF2

Code the 16-Step Drum Sequencer

• Text Editor

• Download the Project Bundle

• Upload the Code and Libraries to the KB RP2040

• How it Works

• MIDI, Drum, Pattern Setup

• Functions

• print_sequence()

• Set Initial LEDs

• Display Setup

• Main Loop

Use the 16-Step Drum Sequencer

• Software Instrument Track

• Drum Kit Select

• Play!

• Mix, Effects, EQ

©Adafruit Industries Page 2 of 38

Overview

Build a Roland 808-style step sequencer to trigger multiple drum tracks in your digital

audio workstation (DAW), such as GarageBand or Ableton, over USB MIDI. All built in

CircuitPython, and easy to customize.

Parts

Adafruit KB2040 - RP2040 Kee Boar

Driver

https://www.adafruit.com/product/5302

©Adafruit Industries Page 3 of 38

https://www.adafruit.com/product/5302
https://www.adafruit.com/product/5302
https://www.adafruit.com/product/5302

Adafruit AW9523 GPIO Expander and LED

Driver Breakout

https://www.adafruit.com/product/4886

Quad Alphanumeric Display - Red 0.54"

Digits w/ I2C Backpack

https://www.adafruit.com/product/1911

©Adafruit Industries Page 4 of 38

https://www.adafruit.com/product/4886
https://www.adafruit.com/product/4886
https://www.adafruit.com/product/4886
https://www.adafruit.com/product/1911
https://www.adafruit.com/product/1911
https://www.adafruit.com/product/1911

1 x Large Solderless Breadboard

Large Solderless Breadboard

https://www.adafruit.com/product/443

1 x Hook-up Wire Spool Set

Hook-up Wire Spool Set - 22AWG Solid Core - 10 x 25ft

https://www.adafruit.com/product/3174

6 x Step Switch w LED

Three Pack PB86

https://www.adafruit.com/product/

5499

1 x Colorful 12mm Square Tactile Button Switch

Assortment

15 pack

https://www.adafruit.com/product/1010

1 x Pink and Purple Woven USB A to USB C Cable

1 meter long

https://www.adafruit.com/product/5153

PB86 Step Switch Breadboard-Friendly

Breakout PCB - Pack of 12

https://www.adafruit.com/product/5631

©Adafruit Industries Page 5 of 38

https://www.adafruit.com/product/5631
https://www.adafruit.com/product/5631
https://www.adafruit.com/product/5631
https://www.adafruit.com/product/443
https://www.adafruit.com/product/443
https://www.adafruit.com/product/3174
https://www.adafruit.com/product/3174
https://www.adafruit.com/product/5499
https://www.adafruit.com/product/5499
https://www.adafruit.com/product/5499
https://www.adafruit.com/product/1010
https://www.adafruit.com/product/1010
https://www.adafruit.com/product/1010
https://www.adafruit.com/product/5153
https://www.adafruit.com/product/5153

100mm Long

100mm Long

1 x STEMMA QT / Qwiic JST SH 4-pin Cable

100mm Long

https://www.adafruit.com/product/4210

2 x STEMMA QT / Qwiic JST SH 4-Pin Cable

50mm Long

https://www.adafruit.com/product/4399

Build the 16-Step Drum Sequencer

©Adafruit Industries Page 6 of 38

https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399

Fritzing diagram

Solder KB2040 Pins
Solder header pins to the Kee Boar (similar

to this Feather configuration ()), then press

it into the breadboard as shown in the

diagram.

©Adafruit Industries Page 7 of 38

https://cdn-learn.adafruit.com/assets/assets/000/117/292/original/sixteen_step_drum_sequencer_4.fzz?1672795958
https://learn.adafruit.com//assets/117299
https://learn.adafruit.com//assets/117299
https://learn.adafruit.com//assets/117436
https://learn.adafruit.com//assets/117436
https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly#soldering-in-plain-headers-2295747-7

Prepare the AW9523

Jumper Soldering on

AW9523
Solder header pins onto the AW9523.

Connect it to the KB2040 with a short

STEMMA QT cable, then press it into the

breadboard as shown.

Solder both address jumpers on the

AW9523 in order to prevent the LEDs from

all lighting at startup. Soldering the

jumpers sets the I2C address on the board

to 0x5B which sets the chip's initial boot

state.

©Adafruit Industries Page 8 of 38

https://learn.adafruit.com//assets/117438
https://learn.adafruit.com//assets/117438
https://learn.adafruit.com//assets/117439
https://learn.adafruit.com//assets/117439

Play/Pause Switch
Add the tactile switch to the lower right

corner of the board as shown. You'll use

this to start and stop your sequencer.

You'll wire this to GND and a KB 2040 IO

pin later.

Step Switches

Each PB-86 step switch has pins for the switch (both Normally Open and Normally

Closed) as well as the LED anode and cathode, and these pins won't work on a

breadboard, due to their arrangement. So, we made a convenient breakout PCB () set

for it.

You can see the full pinout info here ().

©Adafruit Industries Page 9 of 38

https://learn.adafruit.com//assets/117440
https://learn.adafruit.com//assets/117440
https://learn.adafruit.com//assets/117441
https://learn.adafruit.com//assets/117441
https://www.adafruit.com/product/5631
https://learn.adafruit.com/step-switch-party/step-switch-pinout

©Adafruit Industries Page 10 of 38

Step Switch Breakout

Soldering
Snap off the breakout PCBs.

Then, cut your header strip into five-pin

lengths.

Place the header pins into the breadboard

as shown, then solder the breakout PCBs

onto them.

©Adafruit Industries Page 11 of 38

https://learn.adafruit.com//assets/117303
https://learn.adafruit.com//assets/117303
https://learn.adafruit.com//assets/117304
https://learn.adafruit.com//assets/117304
https://learn.adafruit.com//assets/117306
https://learn.adafruit.com//assets/117306
https://learn.adafruit.com//assets/117307
https://learn.adafruit.com//assets/117307

Place the switch into the PCB as shown

and then solder all six legs.

©Adafruit Industries Page 12 of 38

https://learn.adafruit.com//assets/117308
https://learn.adafruit.com//assets/117308
https://learn.adafruit.com//assets/117309
https://learn.adafruit.com//assets/117309
https://learn.adafruit.com//assets/117310
https://learn.adafruit.com//assets/117310
https://learn.adafruit.com//assets/117311
https://learn.adafruit.com//assets/117311

Repeat this process for the remaining fifteen switches, then you'll add them to the

breadboard and start wiring them as shown in the steps below.

Breadboard Wiring

Switch Wiring
Start with the GND and LED + connections

to the breadboard power rails -- making

short wire "staples" helps to keep things

neat.

©Adafruit Industries Page 13 of 38

https://learn.adafruit.com//assets/117432
https://learn.adafruit.com//assets/117432
https://learn.adafruit.com//assets/117433
https://learn.adafruit.com//assets/117433

Switch Wiring Continued
Wire the KB 2040 GND and 3v3 pins to the

breadboard power rails as shown.

Remember to connect all of the

breadboard power rails to each other.

Wire the bottom row of switches as shown

here, connecting their normally open (N.O.)

switch contacts to the GPIO pins of the KB

2040.

Be methodical and careful about it, since

there is quite a lot of wiring it can become

confusing to troubleshoot later!

©Adafruit Industries Page 14 of 38

https://learn.adafruit.com//assets/117443
https://learn.adafruit.com//assets/117443
https://learn.adafruit.com//assets/117444
https://learn.adafruit.com//assets/117444
https://learn.adafruit.com//assets/117447
https://learn.adafruit.com//assets/117447

Play Button and Switch LED

Wiring
Connect the play button as shown here.

Wire the LED- pins from the switches to

their associated pins on the AW9523.

These will drive the current for the LEDs.

Top Row Switches

Next, you can add the top row of switches and wire them the same way you did with

the bottom row, but all going to their own pins on the KB 2040 and AW9523.

©Adafruit Industries Page 15 of 38

https://learn.adafruit.com//assets/117448
https://learn.adafruit.com//assets/117448
https://learn.adafruit.com//assets/117449
https://learn.adafruit.com//assets/117449

©Adafruit Industries Page 16 of 38

Add the Display

Add Display
Plug the 14-segment LED backpack into

the AW9523 with a short STEMMA QT

cable. Also, plug in a longer cable at this

time that will connect to the rotary

encoder breakout.

Due to the position of the STEMMA QT

connectors, the board can't lay flat on the

breadboard, so you'll mount it on the

overhang of the breadboard.

In order to secure it to the board, create

some "staples" with pairs of pin headers

modified as shown. You could alternatively

use double-stick foam tape, hot glue, or

another method.

©Adafruit Industries Page 17 of 38

https://learn.adafruit.com//assets/117454
https://learn.adafruit.com//assets/117454
https://learn.adafruit.com//assets/117455
https://learn.adafruit.com//assets/117455
https://learn.adafruit.com//assets/117456
https://learn.adafruit.com//assets/117456

Add Rotary Encoder
Connect the rotary encoder to the

STEMMA QT cable coming from the 14-

segment LED backpack.

In order to secure it to the breadboard,

solder pin headers and press it into the

breadboard as shown.

©Adafruit Industries Page 18 of 38

https://learn.adafruit.com//assets/117457
https://learn.adafruit.com//assets/117457
https://learn.adafruit.com//assets/117458
https://learn.adafruit.com//assets/117458
https://learn.adafruit.com//assets/117459
https://learn.adafruit.com//assets/117459

Your build is complete -- this is a good time to use a continuity tester to double-check

that you don't have any shorts from power to ground. Next, move on to coding the

Drum Sequencer!

CircuitPython

CircuitPython () is a derivative of MicroPython () designed to simplify experimentation

and education on low-cost microcontrollers. It makes it easier than ever to get

prototyping by requiring no upfront desktop software downloads. Simply copy and

edit files on the CIRCUITPY drive to iterate.

CircuitPython Quickstart

Follow this step-by-step to quickly get CircuitPython running on your board.

Download the latest version of

CircuitPython for this board via

circuitpython.org

©Adafruit Industries Page 19 of 38

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/adafruit_kb2040/

Click the link above to download the latest

CircuitPython UF2 file.

Save it wherever is convenient for you.

To enter the bootloader, hold down the BOOT/BOOTSEL button (highlighted in red

above), and while continuing to hold it (don't let go!), press and release the reset

button (highlighted in blue above). Continue to hold the BOOT/BOOTSEL button until

the RPI-RP2 drive appears!

If the drive does not appear, release all the buttons, and then repeat the process

above.

You can also start with your board unplugged from USB, press and hold the BOOTSEL

button (highlighted in red above), continue to hold it while plugging it into USB, and

wait for the drive to appear before releasing the button.

A lot of people end up using charge-only USB cables and it is very frustrating! Make

sure you have a USB cable you know is good for data sync.

©Adafruit Industries Page 20 of 38

https://learn.adafruit.com//assets/101655
https://learn.adafruit.com//assets/101655

You will see a new disk drive appear called

RPI-RP2.

Drag the adafruit_circuitpython_etc.uf2 file

to RPI-RP2.

The RPI-RP2 drive will disappear and a

new disk drive called CIRCUITPY will

appear.

That's it, you're done! :)

Safe Mode

You want to edit your code.py or modify the files on your CIRCUITPY drive, but find

that you can't. Perhaps your board has gotten into a state where CIRCUITPY is read-

only. You may have turned off the CIRCUITPY drive altogether. Whatever the reason,

safe mode can help.

©Adafruit Industries Page 21 of 38

https://learn.adafruit.com//assets/101656
https://learn.adafruit.com//assets/101656
https://learn.adafruit.com//assets/101657
https://learn.adafruit.com//assets/101657
https://learn.adafruit.com//assets/101658
https://learn.adafruit.com//assets/101658

Safe mode in CircuitPython does not run any user code on startup, and disables auto-

reload. This means a few things. First, safe mode bypasses any code in boot.py

(where you can set CIRCUITPY read-only or turn it off completely). Second, it does not

run the code in code.py. And finally, it does not automatically soft-reload when data is

written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,

safe mode gives you the opportunity to correct it without losing all of the data on the

CIRCUITPY drive.

Entering Safe Mode in CircuitPython 6.x

To enter safe mode when using CircuitPython 6.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

700ms. On some boards, the onboard status LED (highlighted in green above) will

turn solid yellow during this time. If you press reset during that 700ms, the board will

start up in safe mode. It can be difficult to react to the yellow LED, so you may want to

think of it simply as a slow double click of the reset button. (Remember, a fast double

click of reset enters the bootloader.)

Entering Safe Mode in CircuitPython 7.x

To enter safe mode when using CircuitPython 7.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

This section explains entering safe mode on CircuitPython 6.x.

This section explains entering safe mode on CircuitPython 7.x.

©Adafruit Industries Page 22 of 38

1000ms. On some boards, the onboard status LED (highlighted in green above) will

blink yellow during that time. If you press reset during that 1000ms, the board will

start up in safe mode. It can be difficult to react to the yellow LED, so you may want to

think of it simply as a slow double click of the reset button. (Remember, a fast double

click of reset enters the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse

yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently

blink yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.

Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.

Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not

run until you press the reset button, or unplug and plug in your board, to get out of

safe mode.

Flash Resetting UF2

If your board ever gets into a really weird state and doesn't even show up as a disk

drive when installing CircuitPython, try loading this 'nuke' UF2 which will do a 'deep

clean' on your Flash Memory. You will lose all the files on the board, but at least you'll

be able to revive it! After loading this UF2, follow the steps above to re-install

CircuitPython.

Download flash erasing "nuke" UF2

©Adafruit Industries Page 23 of 38

https://cdn-learn.adafruit.com/assets/assets/000/101/659/original/flash_nuke.uf2?1618945856

Code the 16-Step Drum Sequencer

Text Editor

Adafruit recommends using the Mu editor for editing your CircuitPython code. You can

get more info in this guide ().

Alternatively, you can use any text editor that saves simple text files.

Download the Project Bundle

Your project will use a specific set of CircuitPython libraries, and the code.py file. To

get everything you need, click on the Download Project Bundle link below, and

uncompress the .zip file.

Drag the contents of the uncompressed bundle directory onto your KeeBoar board's

CIRCUITPY drive, replacing any existing files or directories with the same names, and

adding any new ones that are necessary.

Upload the Code and Libraries to the KB RP2040

After downloading the Project Bundle, plug your KB2040 into the computer USB port.

You should see a new flash drive appear in the computer's File Explorer or Finder

(depending on your operating system) called CIRCUITPY. Unzip the folder and copy

the following items to the KB2040's CIRCUITPY drive.

lib folder

code.py

SPDX-FileCopyrightText: 2022 John Park for Adafruit Industries

#

SPDX-License-Identifier: MIT

Drum Trigger Sequencer 2040

Based on code by Tod Kurt @todbot https://github.com/todbot/picostepseq

Uses General MIDI drum notes on channel 10

Range is note 35/B0 - 81/A4, but classic 808 set is defined here

import time

from adafruit_ticks import ticks_ms, ticks_diff, ticks_add

import board

from digitalio import DigitalInOut, Pull

import keypad

import adafruit_aw9523

•

•

©Adafruit Industries Page 24 of 38

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

import usb_midi

from adafruit_seesaw import seesaw, rotaryio, digitalio

from adafruit_debouncer import Debouncer

from adafruit_ht16k33 import segments

define I2C

i2c = board.STEMMA_I2C()

num_steps = 16 # number of steps/switches

num_drums = 11 # primary 808 drums used here, but you can use however many you like

Beat timing assumes 4/4 time signature, e.g. 4 beats per measure, 1/4 note gets

the beat

bpm = 120 # default BPM

beat_time = 60/bpm # time length of a single beat

beat_millis = beat_time * 1000 # time length of single beat in milliseconds

steps_per_beat = 4 # subdivide beats down to to 16th notes

steps_millis = beat_millis / steps_per_beat # time length of a beat subdivision,

e.g. 1/16th note

step_counter = 0 # goes from 0 to length of sequence - 1

sequence_length = 16 # how many notes stored in a sequence

curr_drum = 0

playing = False

Setup button

start_button_in = DigitalInOut(board.A2)

start_button_in.pull = Pull.UP

start_button = Debouncer(start_button_in)

Setup switches

switch_pins = (

 board.TX, board.RX, board.D2, board.D3,

 board.D4, board.D5, board.D6, board.D7,

 board.D8, board.D9, board.D10, board.MOSI,

 board.MISO, board.SCK, board.A0, board.A1

)

switches = keypad.Keys(switch_pins, value_when_pressed=False, pull=True)

Setup LEDs

leds = adafruit_aw9523.AW9523(i2c, address=0x5B) # both jumperes soldered on board

for led in range(num_steps): # turn them off

 leds.set_constant_current(led, 0)

leds.LED_modes = 0xFFFF # constant current mode

leds.directions = 0xFFFF # output

Values for LED brightness 0-255

offled = 0

dimled = 2

midled = 20

highled = 150

for led in range(num_steps): # dramatic boot up light sequence

 leds.set_constant_current(led, dimled)

 time.sleep(0.05)

time.sleep(0.5)

#

STEMMA QT Rotary encoder setup

rotary_seesaw = seesaw.Seesaw(i2c, addr=0x36) # default address is 0x36

encoder = rotaryio.IncrementalEncoder(rotary_seesaw)

last_encoder_pos = 0

rotary_seesaw.pin_mode(24, rotary_seesaw.INPUT_PULLUP) # setup the button pin

knobbutton_in = digitalio.DigitalIO(rotary_seesaw, 24) # use seesaw digitalio

knobbutton = Debouncer(knobbutton_in) # create debouncer object for button

encoder_pos = -encoder.position

MIDI setup

midi = usb_midi.ports[1]

©Adafruit Industries Page 25 of 38

drum_names = [

 "Bass", "Snar", "LTom", "MTom", "HTom",

 "Clav", "Clap", "Cowb", "Cymb", "OHat", "CHat"

]

drum_notes = [36, 38, 41, 43, 45, 37, 39, 56, 49, 46, 42] # general midi drum

notes matched to 808

default starting sequence needs to match number of drums in num_drums

sequence = [

 [1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0], # bass drum

 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], # snare

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], # low tom

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], # mid tom

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], # high tom

 [0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # rimshot/claves

 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0], # handclap/maracas

 [0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0], # cowbell

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # cymbal

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], # hihat open

 [0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0] # hihat closed

]

def play_drum(note):

 midi_msg_on = bytearray([0x99, note, 120]) # 0x90 is noteon ch 1, 0x99 is

noteon ch 10

 midi_msg_off = bytearray([0x89, note, 0])

 midi.write(midi_msg_on)

 midi.write(midi_msg_off)

def light_steps(step, state):

 if state:

 leds.set_constant_current(step, midled)

 else:

 leds.set_constant_current(step, offled)

def light_beat(step):

 leds.set_constant_current(step, highled)

def edit_mode_toggle():

 # pylint: disable=global-statement

 global edit_mode

 # pylint: disable=used-before-assignment

 edit_mode = (edit_mode + 1) % num_modes

 display.fill(0)

 if edit_mode == 0:

 display.print(bpm)

 elif edit_mode == 1:

 display.print(drum_names[curr_drum])

def print_sequence():

 print("sequence = [")

 for k in range(num_drums):

 print(" [" + ",".join('1' if e else '0' for e in sequence[k]) + "], #",

drum_names[k])

 print("]")

set the leds

for j in range(sequence_length):

 light_steps(j, sequence[curr_drum][j])

display = segments.Seg14x4(i2c, address=(0x71))

display.brightness = 0.3

display.fill(0)

display.show()

display.print(bpm)

display.show()

edit_mode = 0 # 0=bpm, 1=voices

©Adafruit Industries Page 26 of 38

num_modes = 2

print("Drum Trigger 2040")

display.fill(0)

display.show()

display.marquee("Drum", 0.05, loop=False)

time.sleep(0.5)

display.marquee("Trigger", 0.075, loop=False)

time.sleep(0.5)

display.marquee("2040", 0.05, loop=False)

time.sleep(1)

display.marquee("BPM", 0.05, loop=False)

time.sleep(0.75)

display.marquee(str(bpm), 0.1, loop=False)

while True:

 start_button.update()

 if start_button.fell: # pushed encoder button plays/stops transport

 if playing is True:

 print_sequence()

 playing = not playing

 step_counter = 0

 last_step = int(ticks_add(ticks_ms(), -steps_millis))

 print("*** Play:", playing)

 if playing:

 now = ticks_ms()

 diff = ticks_diff(now, last_step)

 if diff >= steps_millis:

 late_time = ticks_diff(int(diff), int(steps_millis))

 last_step = ticks_add(now, - late_time//2)

 light_beat(step_counter) # brighten current step

 for i in range(num_drums):

 if sequence[i][step_counter]: # if there's a 1 at the step for the

seq, play it

 play_drum(drum_notes[i])

 light_steps(step_counter, sequence[curr_drum][step_counter]) # return

led to step value

 step_counter = (step_counter + 1) % sequence_length

 encoder_pos = -encoder.position # only check encoder while playing

between steps

 knobbutton.update()

 if knobbutton.fell:

 edit_mode_toggle()

 else: # check the encoder all the time when not playing

 encoder_pos = -encoder.position

 knobbutton.update()

 if knobbutton.fell: # change edit mode, refresh display

 edit_mode_toggle()

 # switches add or remove steps

 switch = switches.events.get()

 if switch:

 if switch.pressed:

 i = switch.key_number

 sequence[curr_drum][i] = not sequence[curr_drum][i] # toggle step

 light_steps(i, sequence[curr_drum][i]) # toggle light

 if encoder_pos != last_encoder_pos:

 encoder_delta = encoder_pos - last_encoder_pos

 if edit_mode == 0:

 bpm = bpm + encoder_delta # or (encoder_delta * 5)

 bpm = min(max(bpm, 10), 400)

 beat_time = 60/bpm # time length of a single beat

 beat_millis = beat_time * 1000

©Adafruit Industries Page 27 of 38

 steps_millis = beat_millis / steps_per_beat

 display.fill(0)

 display.print(bpm)

 if edit_mode == 1:

 curr_drum = (curr_drum + encoder_delta) % num_drums

 # quickly set the step leds

 for i in range(sequence_length):

 light_steps(i, sequence[curr_drum][i])

 display.print(drum_names[curr_drum])

 last_encoder_pos = encoder_pos

How it Works

Libraries

The Drum Trigger Sequencer 2040 code first imports a number of libraries used for

counting accurate time, reading switches, lighting LEDs using the AW9523 driver

board, sending MIDI messages, writing to the display, and using the rotary encoder

via SeeSaw.

import time

from adafruit_ticks import ticks_ms, ticks_diff, ticks_add

import board

from digitalio import DigitalInOut, Pull

import keypad

import adafruit_aw9523

import usb_midi

from adafruit_seesaw import seesaw, rotaryio, digitalio

from adafruit_debouncer import Debouncer

from adafruit_ht16k33 import segments

Step and Time Setup

After setting up the I2C bus, the code defines a number of variables related to steps

(the sixteen divisions of the four beat measure), drum tracks (a.k.a. "drum voices"),

tempo (bpm), and variables for state, such as the step_counter ,

sequence_length and playing state.

define I2C

i2c = board.STEMMA_I2C()

num_steps = 16 # number of steps/switches

num_drums = 11 # primary 808 drums used here, but you can use however many you like

Beat timing assumes 4/4 time signature, e.g. 4 beats per measure, 1/4 note gets

the beat

bpm = 120 # default BPM

beat_time = 60/bpm # time length of a single beat

beat_millis = beat_time * 1000 # time length of single beat in milliseconds

steps_per_beat = 4 # subdivide beats down to to 16th notes

steps_millis = beat_millis / steps_per_beat # time length of a beat subdivision,

e.g. 1/16th note

step_counter = 0 # goes from 0 to length of sequence - 1

sequence_length = 16 # how many notes stored in a sequence

©Adafruit Industries Page 28 of 38

curr_drum = 0

playing = False

Setup button

start_button_in = DigitalInOut(board.A2)

start_button_in.pull = Pull.UP

start_button = Debouncer(start_button_in)

Switch Setup

The next section of code sets up the switches using the keypad library and the

switch LEDs using the AW9523 library in constant current mode.

Setup switches

switch_pins = (

 board.TX, board.RX, board.D2, board.D3,

 board.D4, board.D5, board.D6, board.D7,

 board.D8, board.D9, board.D10, board.MOSI,

 board.MISO, board.SCK, board.A0, board.A1

)

switches = keypad.Keys(switch_pins, value_when_pressed=False, pull=True)

Setup LEDs

leds = adafruit_aw9523.AW9523(i2c, address=0x5B) # both jumperes soldered on board

for led in range(num_steps): # turn them off

 leds.set_constant_current(led, 0)

leds.LED_modes = 0xFFFF # constant current mode

leds.directions = 0xFFFF # output

Values for LED brightness 0-255

offled = 0

dimled = 2

midled = 20

highled = 150

for led in range(num_steps): # dramatic boot up light sequence

 leds.set_constant_current(led, dimled)

 time.sleep(0.05)

time.sleep(0.5)

Rotary Encoder Setup

Then, the rotary encoder knob and push button are set up using the seesaw library.

STEMMA QT Rotary encoder setup

rotary_seesaw = seesaw.Seesaw(i2c, addr=0x36) # default address is 0x36

encoder = rotaryio.IncrementalEncoder(rotary_seesaw)

last_encoder_pos = 0

rotary_seesaw.pin_mode(24, rotary_seesaw.INPUT_PULLUP) # setup the button pin

knobbutton_in = digitalio.DigitalIO(rotary_seesaw, 24) # use seesaw digitalio

knobbutton = Debouncer(knobbutton_in) # create debouncer object for button

encoder_pos = -encoder.position

©Adafruit Industries Page 29 of 38

MIDI, Drum, Pattern Setup

MIDI is set up over usb_midi .

The drum_names list is used to store the strings that are displayed on the 14-segment

LED backpacks.

The related drum_notes list defines which General MIDI note numbers correlate to

each drum track (e.g., Note 36 is Bass Drum, Note 42 is a Closed Hi-Hat).

The sequence list stores the default 16-step pattern for each of the drum tracks. A 1

means there is a trigger at that step, a 0 means there is not. So,

[1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0] would trigger a

drum on every quarter note of the measure (a four-on-the-floor kick drum pattern).

MIDI setup

midi = usb_midi.ports[1]

drum_names = [

 "Bass", "Snar", "LTom", "MTom", "HTom",

 "Clav", "Clap", "Cowb", "Cymb", "OHat", "CHat"

]

drum_notes = [36, 38, 41, 43, 45, 37, 39, 56, 49, 46, 42] # general midi drum

notes matched to 808

default starting sequence needs to match number of drums in num_drums

sequence = [

 [1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0], # bass drum

 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], # snare

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], # low tom

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], # mid tom

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], # high tom

 [0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # rimshot/claves

 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0], # handclap/maracas

 [0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0], # cowbell

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # cymbal

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], # hihat open

 [0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0] # hihat closed

]

Functions

A number of functions are created as convenient reusable code sections:

play_drum()

The play_drum(note) function is called to send a MIDI NoteOn and NoteOff

message for a given note number. These are sent as a bytearrays for optimal speed.

©Adafruit Industries Page 30 of 38

def play_drum(note):

 midi_msg_on = bytearray([0x99, note, 120]) # 0x90 is noteon ch 1, 0x99 is

noteon ch 10

 midi_msg_off = bytearray([0x89, note, 0])

 midi.write(midi_msg_on)

 midi.write(midi_msg_off)

light_steps() & light_beat()

The light_steps(step, state) function is called to toggle an LED on or off when

a step switch is pressed.

The light_beat(step) is called once per 16th note when the sequencer is playing

in order to show where the current step is in the pattern -- think of it sort of like the

bouncing ball on a Karaoke machine.

def light_steps(step, state):

 if state:

 leds.set_constant_current(step, midled)

 else:

 leds.set_constant_current(step, offled)

def light_beat(step):

 leds.set_constant_current(step, highled)

edit_mode_toggle()

Since we only have one knob, we need to use it for a couple of different functions.

Pressing the encoder knob toggles between the two modes so the knob can be used

for either changing the tempo or picking among the drum tracks.

The edit_mode_toggle() function is called to toggle the sequencer between

editing the tempo (BPM) with the knob and picking the tracks with the knob.

def edit_mode_toggle():

 global edit_mode

 edit_mode = (edit_mode + 1) % num_modes

 display.fill(0)

 if edit_mode == 0:

 display.print(bpm)

 elif edit_mode == 1:

 display.print(drum_names[curr_drum])

print_sequence()

This is a convenience function -- it is called when you press the Start/Stop button to

stop playback and it prints the current sequence to the REPL/serial monitor. The

©Adafruit Industries Page 31 of 38

format is the same as the sequence[] list in the code, so you can copy and paste to

change the default sequence.

def print_sequence():

 print("sequence = [")

 for k in range(num_drums):

 print(" [" + ",".join('1' if e else '0' for e in sequence[k]) + "], #",

drum_names[k])

 print("]")

Set Initial LEDs

Next, the first drum track's step sequence LEDs are lit.

for j in range(sequence_length):

 light_steps(j, sequence[curr_drum][j])

Display Setup

The 14-segment LED display is set up on I2C, and then runs a set of marquees to print

"Drum Trigger 2040" followed by "BPM" and the initial value of "120".

display = segments.Seg14x4(i2c, address=(0x71))

display.brightness = 0.3

display.fill(0)

display.show()

display.print(bpm)

display.show()

edit_mode = 0 # 0=bpm, 1=voices

num_modes = 2

print("Drum Trigger 2040")

display.fill(0)

display.show()

display.marquee("Drum", 0.05, loop=False)

time.sleep(0.5)

display.marquee("Trigger", 0.075, loop=False)

time.sleep(0.5)

display.marquee("2040", 0.05, loop=False)

time.sleep(1)

display.marquee("BPM", 0.05, loop=False)

time.sleep(0.75)

display.marquee(str(bpm), 0.1, loop=False)

Want to enhance the sequencer's functionality? The print_sequence() function

could lead to more advanced things such as saving sequences to a text file

automatically, or storing multiple sequences!

©Adafruit Industries Page 32 of 38

Main Loop

The main loop of the program first checks to see if the start button has been pressed.

This toggles the playing state, and if it is being stopped, calls the

print_sequence() function. Otherwise, if it is playing, it resets the sequence to the

first step and sets the last_step variable based on ticks.

start_button.update()

 if start_button.fell: # pushed encoder button plays/stops transport

 if playing is True:

 print_sequence()

 playing = not playing

 step_counter = 0

 last_step = int(ticks_add(ticks_ms(), -steps_millis))

 print("*** Play:", playing)

Playing

When the sequence is playing, the timing is counted accurately based on ticks, the

current step LED is flashed, and any drum track steps that are active are played via

MIDI.

Between steps the encoder button and knob are checked, and if so, the button will

switch edit modes and the knob value is stored as encoder_pos for later action.

if playing:

 now = ticks_ms()

 diff = ticks_diff(now, last_step)

 if diff >= steps_millis:

 late_time = ticks_diff(int(diff), int(steps_millis))

 last_step = ticks_add(now, - late_time//2)

 light_beat(step_counter) # brighten current step

 for i in range(num_drums):

 if sequence[i][step_counter]: # if there's a 1 at the step for the

seq, play it

 play_drum(drum_notes[i])

 light_steps(step_counter, sequence[curr_drum][step_counter]) # return

led to step value

 step_counter = (step_counter + 1) % sequence_length

 encoder_pos = -encoder.position # only check encoder while playing

between steps

 knobbutton.update()

 if knobbutton.fell:

 edit_mode_toggle()

 else: # check the encoder all the time when not playing

 encoder_pos = -encoder.position

 knobbutton.update()

 if knobbutton.fell: # change edit mode, refresh display

 edit_mode_toggle()

©Adafruit Industries Page 33 of 38

Switch Check

The switches are all checked with switches.events.get() to see if anything is

pressed. If a switch is pressed it's light is toggled and its value in the sequence[] list

is flipped.

switch = switches.events.get()

 if switch:

 if switch.pressed:

 i = switch.key_number

 sequence[curr_drum][i] = not sequence[curr_drum][i] # toggle step

 light_steps(i, sequence[curr_drum][i]) # toggle light

Knob Change

If the encoder position was changed (due to knob twiddling) the tempo or track will

change, depending on the current edit_mode state.

If in tempo mode the BPM value is increased or decreased (minimum 10, maximum

400!) and the steps_millis value is recalculated. The 14-segment LED display is

updated to read out the current tempo.

Otherwise, in track edit mode, the knob will switch among the eleven drum tracks.

Each has their own step patterns, which update the LEDs on the fly as you rotate the

knob. Also, the 14-segment display shows the current track drum name.

if encoder_pos != last_encoder_pos:

 encoder_delta = encoder_pos - last_encoder_pos

 if edit_mode == 0:

 bpm = bpm + encoder_delta # or (encoder_delta * 5)

 bpm = min(max(bpm, 10), 400)

 beat_time = 60/bpm # time length of a single beat

 beat_millis = beat_time * 1000

 steps_millis = beat_millis / steps_per_beat

 display.fill(0)

 display.print(bpm)

 if edit_mode == 1:

 curr_drum = (curr_drum + encoder_delta) % num_drums

 # quickly set the step leds

 for i in range(sequence_length):

 light_steps(i, sequence[curr_drum][i])

 display.print(drum_names[curr_drum])

 last_encoder_pos = encoder_pos

Use the 16-Step Drum Sequencer

Most any DAW (digital audio workstation) software will allow you to trigger drum kits

using the standardized General MIDI (GM) drum note assignments.

©Adafruit Industries Page 34 of 38

Here is the standard percussion sound set assignment list per MIDI note sent over

channel 10:

31 Sticks

32 Square Click

33 Metronome Bell

34 Metronome Click

35 Acoustic Bass Drum

36 Electric Bass Drum

37 Side Stick

38 Acoustic Snare

39 Hand Clap

40 Electric Snare

41 Low Floor Tom

42 Closed Hi-hat

43 High Floor Tom

44 Pedal Hi-hat

45 Low Tom

46 Open Hi-hat

47 Low-Mid Tom

48 High-Mid Tom

49 Crash Cymbal 1

50 High Tom

51 Ride Cymbal 1

52 Chinese Cymbal

53 Ride Bell

54 Tambourine

55 Splash Cymbal

56 Cowbell

57 Crash Cymbal 2

58 Vibraslap

59 Ride Cymbal 2

60 High Bongo

61 Low Bongo

62 Mute High Conga

63 Open High Conga

64 Low Conga

65 High Timbale

While we normally use MIDI notes to indicate semitone pitches just like on a

piano keyboard, the General MIDI standard reserves notes sent on MIDI channel

10 to play different percussion sounds per note.

©Adafruit Industries Page 35 of 38

66 Low Timbale

67 High Agogô

68 Low Agogô

69 Cabasa

70 Maracas

71 Short Whistle

72 Long Whistle

73 Short Guiro

74 Long Guiro

75 Claves

76 High Woodblock

77 Low Woodblock

78 Mute Cuica

79 Open Cuica

80 Mute Triangle

81 Open Triangle

82 Shaker

83 Jingle Bell

84 Belltree

85 Castanets

86 Mute Surdo

87 Open Surdo

GarageBand () is an excellent, free option for MacOS users, so we'll take a look at how

to set it up here.

Software Instrument Track
Install GarageBand if it isn't already on

your machine and launch it.

Create a new song and then pick Software

Instrument from the Chose a track type

dialogue box. Then click Create.

©Adafruit Industries Page 36 of 38

https://www.apple.com/ios/garageband/
https://learn.adafruit.com//assets/117296
https://learn.adafruit.com//assets/117296

Drum Kit Select
Now you can select the drum kit for your

new software instrument track. Both the

Drum Kit and Electronic Drum Kit

categories will work well with the Drum

Trigger 2040. Here, you can see the

Modern 808 has been picked.

Play!

Now, press the yellow Start/Stop button on your 16-Step Drum Sequencer -- it will start

running, sending MIDI note messages to play the drum kit you selected!

Try turning the encoder knob to change the tempo.

Then, click and hold the encoder knob button to switch into track mode. The display

will show the name of your current drum track -- initially Bass.

Click the step switches to change which steps will trigger the bass/kick drum.

Turn the encoder knob and you can move among the preset drum tracks. Try

changing the step patterns on each track!

These are the tracks:

Bass

Snare

Low Tom

Medium Tom

High Tom

Clave

Clap

Cowbell

Cymbal

Open hi-hat

Closed hi-hat

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

©Adafruit Industries Page 37 of 38

https://learn.adafruit.com//assets/117297
https://learn.adafruit.com//assets/117297

Mix, Effects, EQ
Press the Play button on your 16-Step

Drum Sequencer -- you'll hear your rad

drum pattern playing!

You can fine tune the mix of the different

drum voices, adjust effects, and fine tune

the EQ (equalization) from the Control and

EQ panels in GarageBand.

©Adafruit Industries Page 38 of 38

https://learn.adafruit.com//assets/117298
https://learn.adafruit.com//assets/117298

	16-Step Drum Sequencer
	Table of Contents
	Overview
	Build the 16-Step Drum Sequencer
	CircuitPython
	Code the 16-Step Drum Sequencer
	Use the 16-Step Drum Sequencer

	Overview
	Parts

	Build the 16-Step Drum Sequencer
	Solder KB2040 Pins
	Prepare the AW9523
	Jumper Soldering on AW9523
	Play/Pause Switch
	Step Switches
	Step Switch Breakout Soldering
	Breadboard Wiring
	Switch Wiring
	Switch Wiring Continued
	Play Button and Switch LED Wiring
	Top Row Switches
	Add the Display
	Add Display
	Add Rotary Encoder

	CircuitPython
	CircuitPython Quickstart
	Safe Mode
	Entering Safe Mode in CircuitPython 6.x
	Entering Safe Mode in CircuitPython 7.x
	In Safe Mode

	Flash Resetting UF2

	Code the 16-Step Drum Sequencer
	Text Editor
	Download the Project Bundle
	Upload the Code and Libraries to the KB RP2040
	How it Works
	Libraries
	Step and Time Setup
	Switch Setup
	Rotary Encoder Setup

	MIDI, Drum, Pattern Setup
	Functions
	play_drum()
	light_steps() & light_beat()
	edit_mode_toggle()

	print_sequence()
	Set Initial LEDs
	Display Setup
	Main Loop
	Playing
	Switch Check
	Knob Change

	Use the 16-Step Drum Sequencer
	Software Instrument Track
	Drum Kit Select
	Play!
	Mix, Effects, EQ

